本文主要是介绍JDBC,CaseClass,JSON,Parquet和Schema五种方式创建DataFrame,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
1.JDBC的方式创建DataFrame
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.DataFrameReader;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;public class JDBC2MySQL {public static void main(String[] args){SparkConf conf=new SparkConf();conf.setAppName("JDBC2MySQL").setMaster("local");JavaSparkContext sc=new JavaSparkContext(conf);SQLContext sqlContext=new SQLContext(sc);/*1.通过format("jdbc")的方式说明SparkSQL操作的数据来源是通过JDBC获得*JDBC后端一般是数据库,例如MySQL、Oracle等*2.通过DataFrameReader的option方法把要访问的数据库的信息传递进去*3.url:代表数据库的jdbc链接地址*4.datable:代表具体要链接哪个数据库*5.Driver部分是Spark SQL访问数据库的具体的驱动的完整包名和类名*6.关于JDBC的驱动的Jar,可以放在Spark的library目录,也可以在使用SparkSubmit的使用指定Jar(编码和打包的时候都不需要这个JDBC的Jar)* */DataFrameReader reader=sqlContext.read().format("jdbc");reader.option("url", "jdbc:mysql://SparkMaster:3306");reader.option("dbtable","dt_spark");reader.option("driver", "com.mysql.jdbc.Driver");reader.option("user", "root");reader.option("password", "123");DataFrame mysqlDataSourceDF=reader.load();reader.option("dbtable", "dthadoop");DataFrame DFFromMySQL=reader.load();Map<String, String> options = new HashMap<String, String>();options.put("url", "jdbc:mysql://SparkMaster:3306/testdb");options.put("dbtable", "student_infos");options.put("user", "root");options.put("password","123");DataFrame studentInfosDF=sqlContext.read().format("jdbc").options(options).load();options.put("dbtable", "student_scores");DataFrame studentScoresDF=sqlContext.read().format("jdbc").options(options).load();List<Row> listRow=studentScoresDF.javaRDD().collect();for(Row row:listRow){System.out.println(row);} }
}
2.Case Class的方式创建DataFrame
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.Row;
/** 使用反射的方式将RDD转化为DataFrame*/
public class CaseClassDataFrame {public static void main(String[] args) {SparkConf conf=new SparkConf().setAppName("RDD2DataFrame").setMaster("local");JavaSparkContext sc=new JavaSparkContext(conf);SQLContext sqlContext=new SQLContext(sc);//获取SQLContextJavaRDD<String> lines=sc.textFile("C://Users//Jason Shu//Desktop//persons.txt");JavaRDD<Person> persons=lines.map(new Function<String, Person>()/*RDD<String>变为RDD<Person>,泛型转换*/{public Person call(String line) throws Exception {String[] splited=line.split(" ");Person p =new Person();p.setId(Integer.valueOf(splited[0].trim()));p.setName(splited[1]);p.setAge(Integer.valueOf(splited[0].trim()));return p;}});DataFrame df= sqlContext.createDataFrame(persons, Person.class);//SQLContext变为DataFrame /*creatDataFrame第一个参数JavaRDD<?>rdd,第二个参数Class<?>beanClass*/df.registerTempTable("persons");//注册一张临时表DataFrame bigData=sqlContext.sql("select * from persons where age >=6");JavaRDD<Row> bigDataRDD=bigData.javaRDD();//DataFrame转换为RDDJavaRDD<Person> result=bigDataRDD.map(new Function<Row, Person>()/*DataFrame转换为RDD,这个地方由于bigDataRDD是RDD<Row>,result是RDD<Person>* 相当于是一个泛型转换*/ {public Person call(Row row) throws Exception {Person p =new Person();p.setId(row.getInt(0));p.setName(row.getString(1));p.setAge(row.getInt(2));return p;}});List<Person> personList=result.collect();for(Person p:personList){System.out.println(p);} }}
Person类
public class Person {private static final long serialVesionUID=1L;private int id;private String name;private int age;@Overridepublic String toString() {return "Person [id=" + id + ", name=" + name + ", age=" + age + "]";}public int getId() {return id;}public void setId(int id) {this.id = id;}public String getName() {return name;}public void setName(String name) {this.name = name;}public int getAge() {return age;}public void setAge(int age) {this.age = age;} }
3.JSON方式创建DataFrame
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.DataFrame;
public class JSONDataFrame {public static void main(String[] args) {SparkConf conf =new SparkConf().setAppName("DataFrame").setMaster("spark://SparkMaster:7077");JavaSparkContext sc =new JavaSparkContext(conf);SQLContext sqlContext=new SQLContext(sc);//可以简单的认为DataFrame是一张表DataFrame dataFrame=sqlContext.read().json("hdfs://SparkMaster:9000/data/people.json");dataFrame.show();}}
4.Parquet的方式创建DataFrame
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SQLContext;
public class ParquetDataFrame {public static void main(String[] args) {SparkConf conf=new SparkConf();conf.setAppName("ParquetDataFrame").setMaster("spark://SparkMaster:7077");JavaSparkContext sc=new JavaSparkContext(conf);SQLContext sqlContext=new SQLContext(sc);DataFrame df=sqlContext.read().parquet("/input/people.parquet");df.registerTempTable("users");DataFrame result=sqlContext.sql("select name from users");List<Row> listRow=result.javaRDD().collect();for(Row row:listRow){System.out.println(row);}}
}
5.Schema的方式创建RDD
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.hive.serde2.objectinspector.StructField;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;public class SchemaDataFrame {public static void main(String[] args) {SparkConf conf =new SparkConf();conf.setAppName("SchemaDataFrame").setMaster("local");JavaSparkContext sc=new JavaSparkContext(conf);//如果是sparkcontext就不会textfile(location),而是textfile(location,partition)SQLContext sqlContext=new SQLContext(sc);JavaRDD<String> lines=sc.textFile("C://Users//Jason Shu//Desktop");JavaRDD<Row> personsRDD=lines.map(new Function<String, Row>() //JavaRDD<String>变为JavaRDD<Row>{public Row call(String line) throws Exception {String[] splited=line.split(",");return RowFactory.create(Integer.valueOf(splited[0]),splited[1],Integer.valueOf(splited[2]));} });List<StructField> structFields=new ArrayList<StructField>();//构造一个StructFieldstructFields.add((StructField) DataTypes.createStructField("id",DataTypes.IntegerType,true));structFields.add((StructField) DataTypes.createStructField("name",DataTypes.StringType,true));structFields.add((StructField) DataTypes.createStructField("age",DataTypes.IntegerType,true));StructType structType=DataTypes.createStructType(structFields); }}
这篇关于JDBC,CaseClass,JSON,Parquet和Schema五种方式创建DataFrame的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!