《python每天一小段》--12 数据可视化《1》

2023-12-10 16:52

本文主要是介绍《python每天一小段》--12 数据可视化《1》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎阅读《Python每天一小段》系列!在本篇中,将使用Python Matplotlib实现数据可视化的简单图形。

文章目录

    • 一、概念
      • (1)安装matplotlib
      • (2)数据可视化实现步骤
    • 二、绘制简单的折线图
      • (1)简单的图表
      • (2)修改标签文字和线条粗细
      • (3)校正图形
      • (4)绘制单个点
      • (5)绘制一系列点
      • (6)自动计算
      • (7)删除数据点的轮廓
      • (8)修改颜色
      • (9)自定义颜色
      • (10)颜色映射
      • (11)自动保存
      • (12)绘制前 5 个整数的立方值

一、概念

Matplotlib是一个流行的Python数据可视化库,它提供了丰富的绘图功能,可以创建各种类型的图表,包括折线图、散点图、柱状图、饼图等。

要查看使用matplotlib可制作的各种图表,可访问http://matplotlib.org/

(1)安装matplotlib

pip install matplotlib

(2)数据可视化实现步骤

下面是对Matplotlib的详细解释以及如何实现数据可视化的一般步骤:

  1. 导入Matplotlib库:
    在Python脚本中,首先需要导入Matplotlib库。通常使用以下语句导入Matplotlib的pyplot模块:

    import matplotlib.pyplot as plt
    
  2. 创建图表:
    在开始绘图之前,需要创建一个图表对象。可以使用plt.figure()函数创建一个新的图表。

    plt.figure()
    
  3. 绘制图表:
    使用Matplotlib的各种绘图函数来绘制所需的图表。例如,使用plt.plot()函数绘制折线图,使用plt.scatter()函数绘制散点图,使用plt.bar()函数绘制柱状图等。

    x = [1, 2, 3, 4, 5]
    y = [10, 8, 6, 4, 2]
    plt.plot(x, y)
    
  4. 添加标签和标题:
    可以使用plt.xlabel()plt.ylabel()plt.title()函数为图表添加轴标签和标题。

    plt.xlabel('X轴')
    plt.ylabel('Y轴')
    plt.title('折线图')
    
  5. 自定义图表样式:
    可以使用各种Matplotlib函数来自定义图表的样式,如设置线条颜色、线型、标记样式、图例等。

    plt.plot(x, y, color='red', linestyle='--', marker='o', label='数据')
    plt.legend()
    
  6. 显示图表:
    使用plt.show()函数显示图表。

    plt.show()
    

以上是一个简单的数据可视化的流程。当然,Matplotlib还提供了许多其他功能,如子图、网格、颜色映射等,可以根据需要进行使用和定制。

除了Matplotlib,还有其他一些数据可视化工具可以使用,如Seaborn、Plotly、Bokeh等。每个工具都有其特点和适用场景,可以根据具体需求选择合适的工具来实现数据可视化。

python代码:

import matplotlib.pyplot as pltplt.figure()
x = [1,2,3,4,5]
y = [10,8,6,4,2]
plt.plot(x,y)
#plt.scatter(x,y)
#plt.bar(x,y)plt.title("x,y table",fontsize=24)
plt.xlabel('x轴')
plt.ylabel('y轴')plt.plot(x,y,color='red',linestyle='--',marker='o',label='数据')
plt.legend()plt.show()

生成图表:

在这里插入图片描述

二、绘制简单的折线图

(1)简单的图表

1、首先导入了模块pyplot,并给它指定了别名plt,以免反复输入pyplot

2、创建了一个列表,在其中存储了前述平方数,再将这个列表传递给函数plot(),这个函数尝试根据这些数字绘制出有意义的图形。

3、plt.show()打开matplotlib查看器,并显示绘制的图形

import matplotlib.pyplot as pltsquares = [1,4,9,16,25]
plt.plot(squares)
plt.show()

图表:

在这里插入图片描述

(2)修改标签文字和线条粗细

import matplotlib.pyplot as pltsquares = [1,4,9,16,25]
plt.plot(squares,linewidth=5)#设置图标标题,并给坐标轴加上标签
plt.title("Square Numbers", fontsize=24)
plt.xlabel("Value",fontsize=14)
plt.ylabel("Square of Value",fontsize=14)#设置刻度标记的大小
plt.tick_params(axis='both',labelsize=14)
plt.show()

图标:

在这里插入图片描述

(3)校正图形

import matplotlib.pyplot as pltinput_values = [1,2,3,4,5]
squares = [1,4,9,16,25]
plt.plot(input_values,squares,linewidth=5)#设置图标标题,并给坐标轴加上标签
plt.title("Square Numbers", fontsize=24)
plt.xlabel("Value",fontsize=14)
plt.ylabel("Square of Value",fontsize=14)#设置刻度标记的大小
plt.tick_params(axis='both',labelsize=14)
plt.show()

在这里插入图片描述

(4)绘制单个点

使用scatter()绘制散点图并设置其样式

import matplotlib.pyplot as pltplt.scatter(2,4)
plt.show()

在这里插入图片描述

添加标题,给轴加标签

import matplotlib.pyplot as pltplt.scatter(2,4)plt.scatter(2,4,s=200)plt.title("Square Number",fontsize=24)
plt.xlabel("Value",fontsize=14)
plt.ylabel("Square of Value" ,fontsize=14)#设置刻度标记的大小
plt.tick_params(axis='both',which='major',labelsize=14)plt.show

图表:

在这里插入图片描述

(5)绘制一系列点

要绘制一系列的点,可向scatter()传递两个分别包含x值和y值的列表:

import matplotlib.pyplot as pltx_values = [1,2,3,4,5]
y_values = [1,4,9,16,25]plt.scatter(x_values,y_values,s=100)#设置图标标题及坐标轴指定标签plt.title("Square Number",fontsize=24)
plt.title("Value",fontsize=14)
plt.title("Square of Value",fontsize=14)#设置刻度标记大小
plt.tick_params(axis='both',which='major',labelsize=14)
plt.show()

图表:

在这里插入图片描述

(6)自动计算

手工计算列表要包含的值可能效率低下,需要绘制的点很多时尤其如此。可以不必手工计算
包含点坐标的列表,而让Python循环来替我们完成这种计算。下面是绘制1000个点的代码:

import matplotlib.pyplot as pltx_values = list(range(1,1001))
y_values = [x**2 for x in x_values]plt.scatter(x_values,y_values,s=40)#设置图标并给坐标轴加上标签
plt.title("Square Number",fontsize=24)
plt.title("Value",fontsize=14)
plt.title("Square of Value",fontsize=14)#设置刻度标记大小
plt.tick_params(axis='both',which='major',labelsize=14)#设置每个坐标轴的取值范围
plt.axis([0,1100,0,1100000])plt.show()

图表:

在这里插入图片描述

(7)删除数据点的轮廓

matplotlib允许你给散点图中的各个点指定颜色。默认为蓝色点和黑色轮廓,在散点图包含的数据点不多时效果很好。但绘制很多点时,黑色轮廓可能会粘连在一起。

要删除数据点的轮廓,可在调用scatter()时传递实参:edgecolor='none'

plt.scatter(x_values,y_values,edgecolor='none',s=40)

在这里插入图片描述

(8)修改颜色

修改数据点的颜色,可向scatter()传递参数c,并将其设置为要使用的颜色的名称

plt.scatter(x_values,y_values,c='red',edgecolor='none',s=40)

图表:

在这里插入图片描述

(9)自定义颜色

使用RGB颜色模式自定义颜色。要指定自定义颜色,可传递参数c,并将其设置为一个元组,其中包含三个0~1之间的小数值,它们分别表示红色、绿色和蓝色分量。

plt.scatter(x_values,y_values,c=(0,0,0.8),edgecolor='none',s=40)

图表:

创建一个由淡蓝色点组成的散点图:

在这里插入图片描述

值越接近0,指定的颜色越深,值越接近1,指定的颜色越浅

(10)颜色映射

颜色映射(colormap)是一系列颜色,它们从起始颜色渐变到结束颜色。在可视化中,颜色映射用于突出数据的规律,例如,你可能用较浅的颜色来显示较小的值,并使用较深的颜色来显示较大的值。

模块pyplot内置了一组颜色映射。要使用这些颜色映射,你需要告诉pyplot该如何设置数据集中每个点的颜色。下面演示了如何根据每个点的y值来设置其颜色:

plt.scatter(x_values,y_values,c=y_values,cmap=plt.cm.Blues,edgecolor='none',s=40)

图表:

在这里插入图片描述

将参数c设置成了一个y值列表,并使用参数cmap告诉pyplot使用哪个颜色映射,代码将y值较小的点显示为浅蓝色,并将y值较大的点显示为深蓝色。

要了解pyplot中所有的颜色映射,请访问http://matplotlib.org/,单击Examples,向下滚动到Color Examples,再单击colormaps_reference。

(11)自动保存

要让程序自动将图表保存到文件中,可将对plt.show()的调用替换为对plt.savefig()的调用

plt.savefig("squares.plot.png",bbox_inches='tight')

在这里插入图片描述

(12)绘制前 5 个整数的立方值

import matplotlib.pyplot as plt#绘制前5个整数的立方值
x = [1,2,3,4,5]
y = [x[i] ** 3 for i in range(len(x))]plt.plot(x,y)
plt.xlabel("x")
plt.ylabel("x^3")
plt.show()

在这里插入图片描述

参考引用《Python从入门到实践》

这篇关于《python每天一小段》--12 数据可视化《1》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/477702

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符