Redis Bitmaps 数据结构模型位操作

2023-12-10 09:20

本文主要是介绍Redis Bitmaps 数据结构模型位操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Bitmaps 数据结构模型

Bitmap 本身不是一种数据结构,实际上它就是字符串,但是它可以对字符串的位进行操作。 比如 “abc” 对应的 ASCII 码分别是 97、98、99。对应的二进制分别是 01100010、01100010、01100011, 如下所示:

    a        b         c
+--------+--------+--------+
|01100001|01100010|01100011|
+--------+--------+--------+

位图的最大优点之一是它们在存储信息时通常可以极大地节省空间。

例如,在一个用增量用户 ID 表示不同用户的系统中,仅使用 512 MB 内存就可以记住 40 亿个用户的单个比特信息。
1bit * 4,000,000,000 = 500,000,000 B = 488,281.25 KB = 476.8 MB

GETBIT 仅返回指定索引处的位的值。超出范围的位(寻址超出目标密钥中存储的字符串长度的位)始终被视为零。

root@ubuntu-x64_01:~#  redis-cli --no-auth-warning -h 192.168.88.11 -p 6380 -a "******" get k1 
"a"root@ubuntu-x64_01:~#  redis-cli --no-auth-warning -h 192.168.88.11 -p 6380 -a "******" --eval getbit.lua k1
"01100001"

setbit

设置健的第offset个位的值(从0算起),如有8个用户 userid = 0, 1, 2, 3, 4, 5, 6,7 , 其中用户 1, 3, 5 对网站进行了访问 , 那么Bitmaps初始化如下:

setbit key offset value
192.168.88.11:6380> setbit users:2023-12-09 1 1
(integer) 0
192.168.88.11:6380> setbit users:2023-12-09 3 1
(integer) 0
192.168.88.11:6380> setbit users:2023-12-09 5 1
(integer) 0# 获取当前哪些用户访问了 , 其中 1 表示访问过的用户 
root@ubuntu-x64_01:~#   /redis-cli --no-auth-warning -h 192.168.88.11 -p 6380 -a "******" --eval getbit.lua users:2023-12-09
"01010100"

getbit

获取健的第offset位的值(从0算起), 如下获取 user 5 是否在 2023-12-09 访问过, 1表示访问,0表示没有访问,如果offset不存在,返回结果也是0, 超出范围的位始终被视为零。

192.168.88.11:6380> getbit users:2023-12-09 5
(integer) 1

bitcount

获取Bitmaps指定范围值为1的个数,如统计 2023-12-09 这天访问的用户数量

192.168.88.11:6380> bitcount users:2023-12-09
(integer) 3

bitop

bitmaps之前的运算,它可以做and(交集)、or(并集)、not(非)、xor(异或),并将结果保存在 destkey ,如计算 2023-12-09、2023-12-10 两天都访问过的用户数量

root@ubuntu-x64_01:~#  redis-cli  --no-auth-warning -h 192.168.88.11 -p 6380 -a "******" --eval getbit.lua users:2023-12-09
"01010100"
root@ubuntu-x64_01:~#  redis-cli  --no-auth-warning -h 192.168.88.11 -p 6380 -a "******" --evalgetbit.lua users:2023-12-10
"01100110"192.168.88.11:6380> bitop and users:2023-12-09_10 users:2023-12-09 users:2023-12-10
(integer) 1192.168.88.11:6380> bitcount users:2023-12-09_10
(integer) 2root@ubuntu-x64_01:~#  redis-cli --no-auth-warning -h 192.168.88.11 -p 6380 -a "******" --eval getbit.lua users:2023-12-09_10
"01000100"

小结

将位图拆分为多个键很简单,例如为了对数据集进行分片,并且通常最好避免使用巨大的键。要将位图拆分到不同的键上,而不是将所有位设置为一个键,一个简单的策略就是为每个键存储 M 位,并使用 获取键名称和bit-number/M在键(bit-number MOD M)内寻址的第 N 位。

假设 M=10 , 约100个用户(有点少,仅用作举例):

则 第91个用户寻址如下:健名称: 91 MOD 10 = 1 即 key = user1 , N = 91/10 = 9

则 第65个用户寻址如下:健名称: 65 MOD 10 = 5 即 key = user5 , N = 65/10 = 6

在这里插入图片描述

SETBIT 、 GETBIT 、BITFIELD 均为 O(1)。

BITCOUNT、BITOP、BITPOS 是 O(n),其中n是比较中最长字符串的长度。

这篇关于Redis Bitmaps 数据结构模型位操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/476698

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)