【数据结构第 6 章 ③】- 用 C 语言实现邻接表并简单介绍十字链表和邻接多重表

本文主要是介绍【数据结构第 6 章 ③】- 用 C 语言实现邻接表并简单介绍十字链表和邻接多重表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、邻接表

1.1 - ALGraph.h

1.2 - ALGraph.c

1.3 - Test.c

二、十字链表

三、邻接多重表


 


一、邻接表

邻接表(Adjacency List)是图的一种链式存储结构。在邻接表中,对图中每个顶点建立一个单链表,第 i 个单链表中的结点表示依附于顶点 vi 的边(对有向图是以顶点 vi 为尾的弧)。每个结点由 3 个域组成,其中邻接顶点域(adjVexPos)指示与顶点 vi 邻接的顶点在图中的位置,链域(nextEdge)指示下一条边(或弧)的结点;数据域(info)存储和边(或弧)相关的信息,如权值等

在表头结点中,除了设有链域(firstEdge)指向链表中的第一个结点之外,还设有存储顶点 vi 的名称或其他有关信息的数据域(vertex)。这些表头结点通常以顺序结构的形式存储,以便随机访问任一顶点的边链表。

下图 (a) 和 (b) 所示为图一中 G1 和 G2 的邻接表。

在无向图的邻接表中,顶点 vi 的度恰为第 i 个链表中的结点数;而在有向图中,第 i 个链表中的结点个数只是顶点 vi 的出度,为求入度,必须遍历整个邻接表。在所有链表中,其邻接顶点域的值为 i 的结点个数是顶点 vi 的入度。有时,为了便于确定顶点的入度,可以建立一个有向图的逆邻接表,即对每个顶点 vi 建立一个链接所有进入 vi 的边的表。

下图 (c) 所示为图一中有向图 G1 的逆邻接表。

1.1 - ALGraph.h

注意:下面是以无向图为例的

#pragma once#define DEFAULT_CAPACITY 10typedef char VertexType;typedef struct EdgeNode
{int adjVexPos;struct EdgeNode* nextEdge;
}EdgeNode;typedef struct VertexNode
{VertexType vertex;EdgeNode* firstEdge;
}VertexNode;typedef struct ALGraph
{VertexNode* vertices;int vSize;int eSize;int capacity;
}ALGraph;// 基本操作
void ALGraphInit(ALGraph* pg);  // 初始化void ShowAdjList(ALGraph* pg);  // 显示邻接表int GetVertexPos(ALGraph* pg, VertexType v);  // 获取顶点的位置void InsertVertex(ALGraph* pg, VertexType v);  // 插入顶点
void InsertEdge(ALGraph* pg, VertexType v1, VertexType v2);  // 插入边void EraseVertex(ALGraph* pg, VertexType v);  // 删除顶点
void EraseEdge(ALGraph* pg, VertexType v1, VertexType v2);  // 删除边int GetFirstAdjVexPos(ALGraph* pg, VertexType v);  // 获取 v 的第一个邻接顶点的位置
int GetNextAdjVexPos(ALGraph* pg, VertexType v, VertexType w);
// 获取 v 的(相对于 w)的下一个邻接顶点的位置void ALGraphDestroy(ALGraph* pg);  // 销毁

1.2 - ALGraph.c

  1. 初始化

    void ALGraphInit(ALGraph* pg)
    {assert(pg);pg->vSize = pg->eSize = 0;pg->capacity = DEFAULT_CAPACITY;pg->vertices = (VertexNode*)malloc(sizeof(VertexNode) * pg->capacity);assert(pg->vertices);for (int i = 0; i < pg->capacity; ++i){pg->vertices[i].firstEdge = NULL;}
    }
  2. 显示邻接表

    void ShowAdjList(ALGraph* pg)
    {assert(pg);for (int i = 0; i < pg->vSize; ++i){printf("%d %c:>", i, pg->vertices[i].vertex);EdgeNode* cur = pg->vertices[i].firstEdge;while (cur){printf("%d-->", cur->adjVexPos);cur = cur->nextEdge;}printf("NULL\n");}
    }
  3. 获取顶点的位置

    int GetVertexPos(ALGraph* pg, VertexType v)
    {assert(pg);for (int i = 0; i < pg->vSize; ++i){if (pg->vertices[i].vertex == v)return i;}return -1;
    }
  4. 插入顶点

    void InsertVertex(ALGraph* pg, VertexType v)
    {assert(pg);// 考虑是否需要扩容if (pg->vSize == pg->capacity){VertexNode* tmp = (VertexNode*)realloc(pg->vertices, sizeof(VertexNode) * 2 * pg->capacity);assert(tmp);pg->vertices = tmp;for (int i = pg->capacity; i < 2 * pg->capacity; ++i){pg->vertices[i].firstEdge = NULL;}pg->capacity *= 2;}// 插入顶点pg->vertices[pg->vSize++].vertex = v;
    }
  5. 插入边

    void InsertEdge(ALGraph* pg, VertexType v1, VertexType v2)
    {assert(pg);int pos1 = GetVertexPos(pg, v1);int pos2 = GetVertexPos(pg, v2);if (pos1 == -1 || pos2 == -1)return;// 插入 (v1, v2)EdgeNode* p = (EdgeNode*)malloc(sizeof(EdgeNode));assert(p);p->adjVexPos = pos2;// 头插p->nextEdge = pg->vertices[pos1].firstEdge;pg->vertices[pos1].firstEdge = p;// 插入 (v2, v1)p = (EdgeNode*)malloc(sizeof(EdgeNode));assert(p);p->adjVexPos = pos1;// 头插p->nextEdge = pg->vertices[pos2].firstEdge;pg->vertices[pos2].firstEdge = p;++pg->eSize;  // 注意:边数只需要加 1
    }
  6. 删除顶点

    // 删除顶点
    void EraseVertex(ALGraph* pg, VertexType v)
    {assert(pg);int pos = GetVertexPos(pg, v);if (pos == -1)return;// 第一步:删除和顶点 v 相关联的边EdgeNode* cur = pg->vertices[pos].firstEdge;while (cur){// 找到邻接顶点 v2, 先删除 (v2, v)int pos2 = cur->adjVexPos;EdgeNode* prev2 = NULL;EdgeNode* cur2 = pg->vertices[pos2].firstEdge;while (cur2 && cur2->adjVexPos != pos){prev2 = cur2;cur2 = cur2->nextEdge;}if (cur2){if (prev2 == NULL)pg->vertices[pos2].firstEdge = cur2->nextEdge;elseprev2->nextEdge = cur2->nextEdge;free(cur2);}// 再删除 (v, v2)pg->vertices[pos].firstEdge = cur->nextEdge;free(cur);cur = pg->vertices[pos].firstEdge;--pg->eSize;  // 注意不要遗漏}// 第二步:删除顶点 vpg->vertices[pos].vertex = pg->vertices[pg->vSize - 1].vertex;pg->vertices[pos].firstEdge = pg->vertices[pg->vSize - 1].firstEdge;cur = pg->vertices[pos].firstEdge;while (cur){int pos2 = cur->adjVexPos;EdgeNode* cur2 = pg->vertices[pos2].firstEdge;while (cur2){if (cur2->adjVexPos == pg->vSize - 1){cur2->adjVexPos = pos;break;}cur2 = cur2->nextEdge;}cur = cur->nextEdge;}--pg->vSize;  // 注意不要遗漏
    }
  7. 删除边

    void EraseEdge(ALGraph* pg, VertexType v1, VertexType v2)
    {assert(pg);int pos1 = GetVertexPos(pg, v1);int pos2 = GetVertexPos(pg, v2);if (pos1 == -1 || pos2 == -1)return;// 删除 (v1, v2)EdgeNode* prev = NULL;EdgeNode* cur = pg->vertices[pos1].firstEdge;while (cur && cur->adjVexPos != pos2){prev = cur;cur = cur->nextEdge;}if (cur == NULL)  // 说明 (v1, v2) 不存在 return;if (prev == NULL)pg->vertices[pos1].firstEdge = cur->nextEdge;elseprev->nextEdge = cur->nextEdge;free(cur);// 删除 (v2, v1)// 注意:此时 (v2, v1) 一定存在prev = NULL;cur = pg->vertices[pos2].firstEdge;while (cur->adjVexPos != pos1){prev = cur;cur = cur->nextEdge;}if (prev == NULL)pg->vertices[pos2].firstEdge = cur->nextEdge;elseprev->nextEdge = cur->nextEdge;free(cur);--pg->eSize;  // 注意不要遗漏
    }
  8. 获取 v 的第一个邻接顶点的位置

    int GetFirstAdjVexPos(ALGraph* pg, VertexType v)
    {assert(pg);int pos = GetVertexPos(pg, v);if (pos == -1)return -1;EdgeNode* cur = pg->vertices[pos].firstEdge;if (cur)return cur->adjVexPos;elsereturn -1;
    }
  9. 获取 v 的(相对于 w)的下一个邻接顶点的位置

    int GetNextAdjVexPos(ALGraph* pg, VertexType v, VertexType w)
    {assert(pg);int pos1 = GetVertexPos(pg, v);int pos2 = GetVertexPos(pg, w);if (pos1 == -1 || pos2 == -1)return -1;EdgeNode* cur = pg->vertices[pos1].firstEdge;while (cur && cur->adjVexPos != pos2){cur = cur->nextEdge;}if (cur && cur->nextEdge)return cur->nextEdge->adjVexPos;elsereturn -1;
    }
  10. 销毁

    void ALGraphDestroy(ALGraph* pg)
    {assert(pg);for (int i = 0; i < pg->vSize; ++i){EdgeNode* cur = pg->vertices[i].firstEdge;while (cur){// 头删pg->vertices[i].firstEdge = cur->nextEdge;free(cur);cur = pg->vertices[i].firstEdge;}}free(pg->vertices);pg->vertices = NULL;pg->vSize = pg->eSize = pg->capacity = 0;
    }

1.3 - Test.c

#include "ALGraph.h"
#include <stdio.h>int main()
{ALGraph g;ALGraphInit(&g);InsertVertex(&g, 'A');InsertVertex(&g, 'B');InsertVertex(&g, 'C');InsertVertex(&g, 'D');InsertVertex(&g, 'E');InsertEdge(&g, 'A', 'B');InsertEdge(&g, 'A', 'D');InsertEdge(&g, 'B', 'C');InsertEdge(&g, 'B', 'E');InsertEdge(&g, 'C', 'D');InsertEdge(&g, 'C', 'E');ShowAdjList(&g);printf("\n");EraseVertex(&g, 'C');ShowAdjList(&g);printf("\n");EraseEdge(&g, 'A', 'B');ShowAdjList(&g);printf("\n");printf("%d\n", GetFirstAdjVexPos(&g, 'A'));  // 3printf("%d\n", GetNextAdjVexPos(&g, 'A', 'D'));  // -1ALGraphDestroy(&g);return 0;
}


二、十字链表

十字链表(Orthogonal List)是有向图的另一种链式存储结构。可以看成是将有向图的邻接表和逆邻接表结合起来得到的一种链表。在十字链表中,对应于有向图中的每一条弧有一个结点,对应于每个顶点也有一个结点。这些结点的结构如下图所示。

在弧结点中有 5 个域:其中尾域(tailvex)头域(headvex)分别指示弧尾和弧头这两个顶点在图中的位置,链域 hlink 指向弧头相同的下一条弧,而链域 tlink 指向弧尾相同的下一条弧,info 域指向该弧的相关信息。弧头相同的弧在同一链表上,弧尾相同的弧也在同一链表上

它们的头结点即为顶点结点,它由 3 个域组成:其中 data 域存储和顶点相关的信息,如顶点的名称等;firstinfirstout 为两个链域,分别指向以该顶点为弧头或弧尾的第一个弧结点。

例如下图 (a) 中所示的图的十字链表如下图 (b) 所示。


三、邻接多重表

邻接多重表(Adjacency Multilist)是无向图的另一种链式存储结构。虽然邻接表是无向图的一种有效的存储结构,在邻接表中容易求得顶点和边的各种信息,但是在邻接表中每一条边 有两个结点,分别在第 i 个和第 j 个链表中,这给某些图的操作带来不便,例如在某些图的应用问题中需要对边进行某种操作,如对已被搜索过的边做记号或删除一条边等,此时需要找到表示同一条边的两个结点。因此,在进行这一类操作的无向图的问题中采用邻接多重表更为适宜。

邻接多重表的结构和十字链表类似,在邻接多重表中,每一条边用一个结点表示,它由下图 (a) 所示的 6 个域组成。其中 mark 为标志域,可用以标记该条边是否被搜索过;ivexjvex 为该边依附的两个顶点在图中的位置;ilink 指向下一条依附于顶点 ivex 的边;jlink 指向下一条依附于顶点 jvex 的边,info 为指向和边相关的各种信息的指针域。

每个顶点也用一个结点表示,它由下图 (b) 所示的 2 个域组成。其中,data 域存储和该顶点相关的信息;firstedge 域指示第一条依附于该顶点的边。

例如下图所示为图一中无向图 G2 的邻接多重表。

在邻接多重表中,所有依附于同一顶点的边串联在同一链表中,由于每条边依附于两个顶点,则每个边结点同时链接在两个链表中。可见,对于无向图而言,其邻接多重表和邻接表的差别,仅仅在于同一条边在邻接表中用两个结点表示,而在邻接多重表中只有一个结点。因此,除了在边结点中增加一个标志域外,邻接多重表所需的存储量和邻接表相同

这篇关于【数据结构第 6 章 ③】- 用 C 语言实现邻接表并简单介绍十字链表和邻接多重表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/476455

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

redis群集简单部署过程

《redis群集简单部署过程》文章介绍了Redis,一个高性能的键值存储系统,其支持多种数据结构和命令,它还讨论了Redis的服务器端架构、数据存储和获取、协议和命令、高可用性方案、缓存机制以及监控和... 目录Redis介绍1. 基本概念2. 服务器端3. 存储和获取数据4. 协议和命令5. 高可用性6.

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动