【源码解析】聊聊阻塞队列之LinkedBlockingQueue

2023-12-09 15:45

本文主要是介绍【源码解析】聊聊阻塞队列之LinkedBlockingQueue,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LinkedBlockingQueue

  • LinkedBlockingQueue是一个由链表实现的有界队列阻塞队列。
  • 新元素插入到队列的尾部,队列获取操作则是从队列头部开始获得元素
  • 大小默认值为Integer.MAX_VALUE,所以我们在使用LinkedBlockingQueue时建议手动传值,为其提供我们所需的大小,避免队列过大造成机器负载或者内存爆满等情况。
    在这里插入图片描述

基本特征

LinkedBlockingQueue使用的是两个lock锁进行判断的,而array是使用一个lock锁,所以liked的并发度要高性能更好

构造函数

    public LinkedBlockingQueue() {this(Integer.MAX_VALUE);}public LinkedBlockingQueue(int capacity) {if (capacity <= 0) throw new IllegalArgumentException();this.capacity = capacity;last = head = new Node<E>(null);}

基本属性

 		//存储数据的节点static class Node<E> {E item;Node<E> next; // 单链表Node(E x) { item = x; }}//容量private final int capacity;private final AtomicInteger count = new AtomicInteger();//头节点transient Node<E> head;//尾部节点private transient Node<E> last;// 获取并移除元素时使用的锁,如take, poll, etcprivate final ReentrantLock takeLock = new ReentrantLock();//notEmpty条件对象,当队列没有数据时用于挂起执行删除的线程private final Condition notEmpty = takeLock.newCondition();// 添加元素时使用的锁如 put, offer, etcprivate final ReentrantLock putLock = new ReentrantLock();// notFull条件对象,当队列数据已满时用于挂起执行添加的线程private final Condition notFull = putLock.newCondition();

可以发现LinkedBlockingQueue使用的是两个lock锁进行并发控制的,添加和删除可以同时进行。并且本身是使用node链表节点进行处理的。默认值大小是Integer.MAX_VALUE。

添加

因为LinkedBlockingQueue继承了抽象类AbstractQueue,所以add方法自己没有实现,使用的是父类的。

    public boolean add(E e) {if (offer(e))return true;elsethrow new IllegalStateException("Queue full");}
    public boolean offer(E e) {//空处理if (e == null) throw new NullPointerException();final AtomicInteger count = this.count;//长度等于容量 返回 falseif (count.get() == capacity)return false;int c = -1;//构建节点Node<E> node = new Node<E>(e);final ReentrantLock putLock = this.putLock;//获取锁putLock.lock();try {if (count.get() < capacity) {enqueue(node); // 添加元素//CAS 添加元素个数c = count.getAndIncrement();if (c + 1 < capacity)//如果容量没有满,唤醒获取lock阻塞的线程,继续添加元素notFull.signal(); // ?? 怎么唤醒的}} finally {putLock.unlock();}if (c == 0)//如果存在数据 唤醒消费锁signalNotEmpty();return c >= 0;}

获取

    public void put(E e) throws InterruptedException {if (e == null) throw new NullPointerException();int c = -1;Node<E> node = new Node<E>(e);final ReentrantLock putLock = this.putLock;final AtomicInteger count = this.count;putLock.lockInterruptibly();try {//队列满,等待notFull条件满足while (count.get() == capacity) {notFull.await();}//入队enqueue(node);c = count.getAndIncrement();if (c + 1 < capacity)notFull.signal();} finally {putLock.unlock();}if (c == 0)signalNotEmpty();}
    public E poll() {//获取当前元素的个数final AtomicInteger count = this.count;//为空的话 返回nullif (count.get() == 0)return null;E x = null;int c = -1;final ReentrantLock takeLock = this.takeLock;takeLock.lock();try {if (count.get() > 0) {x = dequeue();c = count.getAndDecrement();//如果队列未空 继续唤醒等待条件对象notEmpty上的消费线程if (c > 1)notEmpty.signal();}} finally {takeLock.unlock();}if (c == capacity)signalNotFull();return x;}public E take() throws InterruptedException {E x;int c = -1;final AtomicInteger count = this.count;final ReentrantLock takeLock = this.takeLock;takeLock.lockInterruptibly();try {while (count.get() == 0) {notEmpty.await();}x = dequeue();c = count.getAndDecrement();if (c > 1)notEmpty.signal();} finally {takeLock.unlock();}if (c == capacity)signalNotFull();return x;}

对比

  • 队列大小不一样,array是有界队列,Linked是无界队列,后者可能出现OOM
  • 数据结构不一样,array是数组,linked是使用链表
  • 并发度不一样,array是一个lock,linked是两个lock

这篇关于【源码解析】聊聊阻塞队列之LinkedBlockingQueue的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/474241

相关文章

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Springboot @Autowired和@Resource的区别解析

《Springboot@Autowired和@Resource的区别解析》@Resource是JDK提供的注解,只是Spring在实现上提供了这个注解的功能支持,本文给大家介绍Springboot@... 目录【一】定义【1】@Autowired【2】@Resource【二】区别【1】包含的属性不同【2】@

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

利用Python和C++解析gltf文件的示例详解

《利用Python和C++解析gltf文件的示例详解》gltf,全称是GLTransmissionFormat,是一种开放的3D文件格式,Python和C++是两个非常强大的工具,下面我们就来看看如何... 目录什么是gltf文件选择语言的原因安装必要的库解析gltf文件的步骤1. 读取gltf文件2. 提