c 语言 堆的解析(自我理解)!!!堆排序,建堆

2023-12-09 03:36

本文主要是介绍c 语言 堆的解析(自我理解)!!!堆排序,建堆,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.堆是什么?

首先先看一个图片

小顶堆的意思就是顶 的元素最小,两个子节点的元素要大于父节点。大顶堆同理。

小顶堆就像是一个金字塔。第一层很小,然后后面是依次增大,就像社会人才金字塔图一样。

大顶堆就可以想做,每个人的财富拥有值的金字塔图,上层人的钱很多,而底层的人钱最少。

其次关于堆,其实堆在通常情况下是一个完全二叉树 (只有最底层的节点没有充满的二叉树,全充满的也属于完全二叉树叫做满二叉树)

那堆能干嘛呢,首先堆是可以用来排序的,而且排序的时间也是较快,处于(n*logn)这个层级。 

 还有一个就是在频繁的出队和入队时,用堆是一个不错的选择。如果用数组和链表来完成pop和push时,时间复杂度是O(n)而用 堆就是O(log n)。

在一个堆中通常用parent 和 child 来表示父节点和子节点。堆通常都是用数组来实现的。

通过上图可以看出堆的父节点如果为0的话,子节点就是1 和 2.就可以推导出公式

child = parent * 2 +1 或者 parent * 2 + 2。parent = child  / 2。

2.堆的实现和接口。(小堆)

1.头文件

#define _CRT_SECURE_NO_WARNINGS  1
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>
#include<time.h>
typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;
void Swap(int* C, int* P);
void AdjustUP(int* a, int size);//向上调整
void AdjustDown(HPDataType* a, int size,int parent);//向下调整
void HPInit(HP* hp);//初始化
void HPDestroy(HP* hp);//摧毁
void HeapPush(HP* hp, HPDataType x);//加入数据
void HeapPop(HP* hp);//删除数据
HPDataType HeapTop(HP* hp);//查找头元素
int HeapSize(HP* hp);//有效元素个数
bool HeapEmpty(HP* hp);//判空

堆的底层和顺序表的底层很像,但二者也不是相同。

size 的意思是目前元素的个数

capacity是当前开辟的空间的容量 

2.初始化

void HPInit(HP* hp)
{assert(hp);hp->a = NULL;hp->capacity = 0;hp->size = 0;
}

3.摧毁

void HPDestroy(HP* hp)
{assert(hp);free(hp->a);hp->a = NULL;hp->capacity = 0;hp->size = 0;
}

4.向上调整(重点)

void AdjustUP(int* a,int Child)
{assert(a);int Parent = (Child - 1) / 2;while (Child > 0){if (a[Child] < a[Parent]){Swap(&(a[Child]), &(a[Parent]));}else{break;}Child = (Child - 1) / 2;Parent = (Parent - 1) / 2;}
}

关于向上调整实际上就是,把选定的Child位置元素,以大堆或小堆的方式向上调整。

 因为向上调整是从孩子的位置开始向父亲的位置开始调整的,因为向上嘛,如果是父亲调儿子辈分就乱了。所以传入进来的 child 。然后 child > 0 ,是为了让 最后 孩子走到顶就是 0 的位置以后 这时才将所有的父节点比较结束。

因为实现的是小堆,如果子节点的值小于父节点就交换二者的值。出现 大于父节点的值就break。child = (child - 1)/2 是为了让子节点成为父节点,而 parent = (parent - 1)/2是为了让父节点等与下一个父节点,大致想象为爷爷节点。

5.向下调整(重点)

void AdjustDown(HPDataType *a,int size,int parent)
{assert(a);int child = parent*2+1;while (child < size){if (child + 1 < size && a[child] > a[child + 1]){++child;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}

顾名思义 向下调整就是以开头第一个元素为始,开始依次向子节点比较,当child 大于或等于size时循环停止,child + 1小于size 和 a【child】 大于 a【child + 1】条件的原因是,因为向下调整要对比的是两个子节点,通过比较 选出较小的节点(小堆),如果 【child+1】较小就++child。如果父节点比最小的子节点大,那就交换二者的位置,然后向下以这个逻辑,循环到如果出现 最小的孩子 比父亲节点还大的话,那就break循环,如果没有就循环到child大于等于size为止。 

6.插入(重点)

void HeapPush(HP* hp, HPDataType x)
{assert(hp);if (hp->capacity == hp->size){int newcapacity = hp->capacity == 0 ? 4 : 2 * hp->capacity;HPDataType* tmp = (HPDataType*)realloc(hp->a,sizeof(HPDataType) * newcapacity);if (tmp == NULL){perror("realloc failed");exit(-1);}hp->a = tmp;hp->capacity = newcapacity;}hp->a[hp->size] = x;hp->size++;AdjustUP(hp->a,hp->size);
}

 对于堆的插入呢,当然首先也是尾插,因为这是一个小堆,如果你插入一个特别小的数,那么这个堆就得重新开始调整了。当然调整就用一个向上调整即可,从最下面往上面调整。

因为是插入,所以要先判断整个数列的空间和现在的元素个数,如果 相等了那就得扩容了。

扩容好以后,把要插入的数字尾插在数列的尾端,同时size++,然后对这个数字进行向上调整。

7.删除(重点)

void HeapPop(HP* hp)
{assert(hp);Swap(&(hp->a[hp->size]), &(hp->a[0]));hp->size--;AdjustDown(hp->a,hp->size,0);
}

堆的删除,不是尾删 。而是把头元素删除。 

所以一般的堆删除就是把头尾交换,在把size-- 和顺序的删除很像,就是删除的头结点。、

删除之后对堆在进行一次向下调整即可。因为传上来的数字本来就是在最下面的,所以要把它在沉到最下面。

8.头元素

HPDataType HeapTop(HP* hp)
{assert(hp);return hp->a[0];
}

9.元素个数

int HeapSize(HP* hp)
{assert(hp);return hp->size;
}

10.判空

bool HeapEmpty(HP* hp)
{assert(hp);return hp->size == 0;
}

3.堆的排序。

所谓排序,相信大家都已经学过冒泡排序了把,排序就是把一串数字排成升序或者降序。

那我们为什么要学习排序呢?最重要的一点就是   面试   sdad 

在笔试的时候,最主要的就是靠算法题。像拼多多、头条这种大公司,上来就来几道算法题,如果你没AC出来,面试机会都没有。

在面试(现场面或者视频面)的时候也会问算法题,难度肯定是没有笔试的时候那么难的。我们可以想象一个场景,一面面试面到一半,面试官让你反转二叉树,问问现在的自己,你还会吗。

 所以这些排序我们都还得学,当然以后如果有这方面的工作也会用得到,技多不压身。

堆排序的源代码和实现

#include"Heap.h"
void HeapSort(int* a, size_t size)
{for (int i = (size-1-1)/2; i >=0; i--){AdjustDown(a, size,i);}for (int i = size-1; i > 0; i--){Swap(&a[i], &a[0]);AdjustDown(a, i,0);}
}
int main()
{int arr[] = { 4,10,22,3,6,9,25,11,715 };HeapSort(arr, sizeof(arr) / sizeof(arr[0]));return 0;
}

首先堆排序咱有两步,第一步是先把一组数组先把它先建立成堆。

第二步就是用调整的方法把这个数组变成有序的

关于建堆有两种方法,第一种是用向上调整直接从数组第一个开始,每一个都进行一次向上调整,如果这样调整的话,建堆这个过程的时间复杂度就是n * logn。

而向下调整建堆的时间复杂度则到达了 n ,快了很多,这是向下调整的图片

 

 而我们用向下调整建堆呢,是从这个图元素大小为28的最后一个元素的父节点来进行调整的,这种建堆的关键就是从倒数第一个非叶子节点开始调(也就是树中最后一个父节点),然后逐渐+1,就可以调整从最后一个父节点开始的每一棵树.公式里的第一个size - 1呢是因为本来size是计算元素个数的,数组又是从0开始排序的,所以size - 1是要得到最后一个叶子结点。

而第二个 - 1呢是因为,parent = (child - 1)/ 2.因为adjustdown中传入的第三个变量是parent 所以 需要第二次 - 1.(所以一般建堆都是用向下调整建堆,时间效率高)

 

 

这篇关于c 语言 堆的解析(自我理解)!!!堆排序,建堆的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472323

相关文章

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图