Spark 中 Dataset.show 如何使用?有哪些值得注意的地方?

2023-12-08 08:48

本文主要是介绍Spark 中 Dataset.show 如何使用?有哪些值得注意的地方?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本文隶属于专栏《大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!

本专栏目录结构和参考文献请见大数据技术体系


WHAT

Dataset.show 在我们平常 Spark 开发测试中经常使用。

它可以用来展示 Dataset


重载方法

def show(numRows: Int): Unitdef show(): Unitdef show(truncate: Boolean): Unitdef show(numRows: Int, truncate: Boolean): Unitdef show(numRows: Int, truncate: Int): Unitdef show(numRows: Int, truncate: Int, vertical: Boolean): Unit

使用注意点

上面的 6 个重载方法有哪些值得注意的地方呢?

1. vertical

show() 方法存在 2 种打印模式

默认是横式的,如下所示:

  year  month AVG('Adj Close) MAX('Adj Close)1980  12    0.503218        0.5951031981  01    0.523289        0.5703071982  02    0.436504        0.4752561983  03    0.410516        0.4421941984  04    0.450090        0.483521

另一种是竖式的,如下所示:

-RECORD 0-------------------year            | 1980month           | 12AVG('Adj Close) | 0.503218AVG('Adj Close) | 0.595103
-RECORD 1-------------------year            | 1981month           | 01AVG('Adj Close) | 0.523289AVG('Adj Close) | 0.570307
-RECORD 2-------------------year            | 1982month           | 02AVG('Adj Close) | 0.436504AVG('Adj Close) | 0.475256
-RECORD 3-------------------year            | 1983month           | 03AVG('Adj Close) | 0.410516AVG('Adj Close) | 0.442194
-RECORD 4-------------------year            | 1984month           | 04AVG('Adj Close) | 0.450090AVG('Adj Close) | 0.483521

2. numRows

show() 方法可以通过设置 numRows 来控制最终返回多少行数据,默认 20。

3. truncate

  1. show() 方法可以通过设置 truncate 参数来控制单个数据列字符串最长显示的长度,并且所有列都会靠右对齐。
  2. 字符串如果超过 truncate(默认是 20),将会截取前面的 truncate - 3 长度,后面再加上 ...
str.substring(0, truncate - 3) + "..."
  1. 对于数据类型是 Array[Byte] 的数据列,会用"[", " ", "]" 的格式输出
binary.map("%02X".format(_)).mkString("[", " ", "]")

Dataset.show 具体的源码解析请参考我的这篇博客——Spark SQL 工作流程源码解析(四)optimization 阶段(基于 Spark 3.3.0)


实践

源码下载

spark-examples 代码已开源,本项目致力于提供最具实践性的 Apache Spark 代码开发学习指南。

点击链接前往 github 下载源码:spark-examples


数据

{"name": "Alice","age": 18,"sex": "Female","addr": ["address_1","address_2", " address_3"]}
{"name": "Thomas","age": 20, "sex": "Male","addr": ["address_1"]}
{"name": "Tom","age": 50, "sex": "Male","addr": ["address_1","address_2","address_3"]}
{"name": "Catalina","age": 30, "sex": "Female","addr": ["address_1","address_2"]}

代码

package com.shockang.study.spark.sql.showimport com.shockang.study.spark.SQL_DATA_DIR
import com.shockang.study.spark.util.Utils.formatPrint
import org.apache.spark.sql.SparkSession/**** @author Shockang*/
object ShowExample {val DATA_PATH: String = SQL_DATA_DIR + "user.json"def main(args: Array[String]): Unit = {val spark = SparkSession.builder.master("local[*]").appName("ShowExample").getOrCreate()spark.sparkContext.setLogLevel("ERROR")spark.read.json(DATA_PATH).createTempView("t_user")val df = spark.sql("SELECT * FROM t_user")formatPrint("""df.show""")df.showformatPrint("""df.show(2)""")df.show(2)formatPrint("""df.show(true)""")df.show(true)formatPrint("""df.show(false)""")df.show(false)formatPrint("""df.show(2, truncate = true)""")df.show(2, truncate = true)formatPrint("""df.show(2, truncate = false)""")df.show(2, truncate = false)formatPrint("""df.show(2, truncate = 0)""")df.show(2, truncate = 0)formatPrint("""df.show(2, truncate = 20)""")df.show(2, truncate = 20)formatPrint("""df.show(2, truncate = 0, vertical = true)""")df.show(2, truncate = 0, vertical = true)formatPrint("""df.show(2, truncate = 20, vertical = true)""")df.show(2, truncate = 20, vertical = true)formatPrint("""df.show(2, truncate = 0, vertical = false)""")df.show(2, truncate = 0, vertical = false)formatPrint("""df.show(2, truncate = 20, vertical = false)""")df.show(2, truncate = 20, vertical = false)spark.stop()}
}

打印

========== df.show ==========
+--------------------+---+--------+------+
|                addr|age|    name|   sex|
+--------------------+---+--------+------+
|[address_1, addre...| 18|   Alice|Female|
|         [address_1]| 20|  Thomas|  Male|
|[address_1, addre...| 50|     Tom|  Male|
|[address_1, addre...| 30|Catalina|Female|
+--------------------+---+--------+------+========== df.show(2) ==========
+--------------------+---+------+------+
|                addr|age|  name|   sex|
+--------------------+---+------+------+
|[address_1, addre...| 18| Alice|Female|
|         [address_1]| 20|Thomas|  Male|
+--------------------+---+------+------+
only showing top 2 rows========== df.show(true) ==========
+--------------------+---+--------+------+
|                addr|age|    name|   sex|
+--------------------+---+--------+------+
|[address_1, addre...| 18|   Alice|Female|
|         [address_1]| 20|  Thomas|  Male|
|[address_1, addre...| 50|     Tom|  Male|
|[address_1, addre...| 30|Catalina|Female|
+--------------------+---+--------+------+========== df.show(false) ==========
+----------------------------------+---+--------+------+
|addr                              |age|name    |sex   |
+----------------------------------+---+--------+------+
|[address_1, address_2,  address_3]|18 |Alice   |Female|
|[address_1]                       |20 |Thomas  |Male  |
|[address_1, address_2, address_3] |50 |Tom     |Male  |
|[address_1, address_2]            |30 |Catalina|Female|
+----------------------------------+---+--------+------+========== df.show(2, truncate = true) ==========
+--------------------+---+------+------+
|                addr|age|  name|   sex|
+--------------------+---+------+------+
|[address_1, addre...| 18| Alice|Female|
|         [address_1]| 20|Thomas|  Male|
+--------------------+---+------+------+
only showing top 2 rows========== df.show(2, truncate = false) ==========
+----------------------------------+---+------+------+
|addr                              |age|name  |sex   |
+----------------------------------+---+------+------+
|[address_1, address_2,  address_3]|18 |Alice |Female|
|[address_1]                       |20 |Thomas|Male  |
+----------------------------------+---+------+------+
only showing top 2 rows========== df.show(2, truncate = 0) ==========
+----------------------------------+---+------+------+
|addr                              |age|name  |sex   |
+----------------------------------+---+------+------+
|[address_1, address_2,  address_3]|18 |Alice |Female|
|[address_1]                       |20 |Thomas|Male  |
+----------------------------------+---+------+------+
only showing top 2 rows========== df.show(2, truncate = 20) ==========
+--------------------+---+------+------+
|                addr|age|  name|   sex|
+--------------------+---+------+------+
|[address_1, addre...| 18| Alice|Female|
|         [address_1]| 20|Thomas|  Male|
+--------------------+---+------+------+
only showing top 2 rows========== df.show(2, truncate = 0, vertical = true) ==========
-RECORD 0----------------------------------addr | [address_1, address_2,  address_3] age  | 18                                 name | Alice                              sex  | Female                             
-RECORD 1----------------------------------addr | [address_1]                        age  | 20                                 name | Thomas                             sex  | Male                               
only showing top 2 rows========== df.show(2, truncate = 20, vertical = true) ==========
-RECORD 0--------------------addr | [address_1, addre... age  | 18                   name | Alice                sex  | Female               
-RECORD 1--------------------addr | [address_1]          age  | 20                   name | Thomas               sex  | Male                 
only showing top 2 rows========== df.show(2, truncate = 0, vertical = false) ==========
+----------------------------------+---+------+------+
|addr                              |age|name  |sex   |
+----------------------------------+---+------+------+
|[address_1, address_2,  address_3]|18 |Alice |Female|
|[address_1]                       |20 |Thomas|Male  |
+----------------------------------+---+------+------+
only showing top 2 rows========== df.show(2, truncate = 20, vertical = false) ==========
+--------------------+---+------+------+
|                addr|age|  name|   sex|
+--------------------+---+------+------+
|[address_1, addre...| 18| Alice|Female|
|         [address_1]| 20|Thomas|  Male|
+--------------------+---+------+------+
only showing top 2 rows

这篇关于Spark 中 Dataset.show 如何使用?有哪些值得注意的地方?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469247

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完