AI 助力双碳目标:让每一度电都是我们优化的

2023-12-07 20:20

本文主要是介绍AI 助力双碳目标:让每一度电都是我们优化的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:辛焱(悬尘)   达摩院决策智能实验室

双碳下新型电力系统带来的挑战

据统计:调度通过优化计算对新能源消纳能力每增加1%,将会影响1.2GW等效48亿元投资。所以如何做好电网调度将是实现双碳非常重要的一个环节。

“碳达峰、碳中和”被纳入生态文明建设整体布局,“构建以新能源为主体的新型电力系统”的新要求,将使得新型电力系统呈现高比例新能源消纳、源网荷储互动融合、多能互补、电力系统灵活调节、用户用能需求多样化等特征,对传统电网可靠供电、安全稳定和经济运行带来了新的挑战,同时对电网调控工作提出了新的要求。

随着新型电力系统建设的快速推进,电网运行认知方面已经临新的问题:

1)电网调度控制复杂性不断加大,调度运行特性发生了深刻变化,对电网的精细化调控和一体化统筹管理水平提出了更高的要求;

2)由于电力电子装置广泛使用以及新能源渗透率的提高,电力系统表现出越来越强的复杂性和强不确定性,如何保证电网稳定、安全运行,成为电网调控的重大战略问题,而传统基于物理特性的模型驱动方法难以短时间内得到正确结果;

3)由于电源结构转变,系统惯量降低,对于电网调度优化的计算颗粒度要越来越精细,相当于计算的效率要越来越高。

用优化模型来解释下这个变化:从之前的LP要逐步变成MILP甚至MINLP,同时计算的规模与范围会指数增长,但要求计算效率要更快。这个问题是不是看着有点像“既要又要”?是的,这个就是电网调度在新型电力系统面临的挑战。

找到了关键问题与主要矛盾,下面我们来看下我们是怎么一步步来解决这些问题的。

第一阶段:国产化替代

分别与国网两院签订求解器在电力现货经济调度与机组组合验证项目,对比图如下:

国网两院给予的结论是:分别在电力定价,机组组合阶段与国外求解器计算结果一致且计算效率相仿,具备替代国外求解器条件。但仅仅停留在底层优化技术,我们发现无法解决新型电力系统的调度难题,我们还要更深入的去了解这个技术方向。

第二阶段:夺冠

2021年8-10月国网举办了AI调度大赛,达摩院决策智能实验室夺冠:

比赛的内容是在0.1s内在考虑N-1断线与新能源不确定性下做出考虑交流潮流的机组组合问题,问题规模是50机组126节点。目标是在考虑各类网络安全约束下尽量消纳新能源并且保证系统成本最低(是一个鲁棒MINLP优化问题,但计算时间要求很苛刻)

决策智能内部成立了2个技术小组分别从MINLP和强化学习2个方向进行技术探索,在整个比赛过程中我们开发了一套潮流计算工具,尝试针对电力系统的MINLP基于Jacobian Matrix做了线性化,在DDPG里面融合了大量业务知识,最终在决赛阶段通过2个技术方向以松耦合的结合方式取得了冠军。在这个过程中,我们越来越坚信:强化学习和底层优化技术的结合才能解决新型电力系统调度决策问题。

第三阶段:全球第一个云上AI电力调度系统

搞定了比赛之后我们没有停下脚步,在电力行业线帮助下找到了南网的电力调度实验场景,在南网调度云上搭建了总调的实时AI调度决策系统。

挑战是:我们调研了强化学习在国内外的应用都没有超过1000节点以上的系统,南网总调的规模是4000节点、1000多台机组的这样大规模电网结构(是我们参加比赛的40倍),对如此大规模网络结构进行强化学习训练是一项非常大的挑战。我们寻求到蚂蚁RAY团队的帮助,在他们帮助下使用了RAY进行大规模分布式强化学习训练;单次训练潮流计算效率是瓶颈,我们将潮流计算进行了改造结合了我们底层数值计算LU分解能力,将单次计算控制在了0.5s以下。实际的调度系统对于电力调度决策的安全性要求极高,我们在这个问题中采用了SafeRL的方法,将强化与底层优化技术深度耦合在了一起,实现了每一度电都是我们优化的,并且将计算效率提高了100倍以上,具备了秒级调度优化能力。

我们取得的结果:

第四阶段:我们把积累的能力拿出来与大家共享

为了支撑某电网今年举办的强化学习AI调度大赛,我们搭建了无影+强化学习分布式训练云平台,建立了当地电网模拟仿真环境。我们希望降低强化学习使用门槛,赋能电力行业,让大家能更用简单的方式将强化学习应用在电力调度的各个业务。

这篇关于AI 助力双碳目标:让每一度电都是我们优化的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/467235

相关文章

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3