C/C++,树算法——二叉树(BTree)的基本数据结构

2023-12-07 18:29

本文主要是介绍C/C++,树算法——二叉树(BTree)的基本数据结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 文本格式


using System;

// A BTree
class Btree
{
    public BTreeNode root; // Pointer to root node
    public int t; // Minimum degree

    // Constructor (Initializes tree as empty)
    Btree(int t)
    {
        this.root = null;
        this.t = t;
    }

    // function to traverse the tree
    public void traverse()
    {
        if (this.root != null)
            this.root.traverse();
        Console.WriteLine();
    }

    // function to search a key in this tree
    public BTreeNode search(int k)
    {
        if (this.root == null)
            return null;
        else
            return this.root.search(k);
    }
}

// A BTree node
class BTreeNode
{
    int[] keys; // An array of keys
    int t; // Minimum degree (defines the range for number of keys)
    BTreeNode[] C; // An array of child pointers
    int n; // Current number of keys
    bool leaf; // Is true when node is leaf. Otherwise false

    // Constructor
    BTreeNode(int t, bool leaf) {
        this.t = t;
        this.leaf = leaf;
        this.keys = new int[2 * t - 1];
        this.C = new BTreeNode[2 * t];
        this.n = 0;
    }

    // A function to traverse all nodes in a subtree rooted with this node
    public void traverse() {

        // There are n keys and n+1 children, traverse through n keys
        // and first n children
        int i = 0;
        for (i = 0; i < this.n; i++) {

            // If this is not leaf, then before printing key[i],
            // traverse the subtree rooted with child C[i].
            if (this.leaf == false) {
                C[i].traverse();
            }
            Console.Write(keys[i] + " ");
        }

        // Print the subtree rooted with last child
        if (leaf == false)
            C[i].traverse();
    }

    // A function to search a key in the subtree rooted with this node.
    public BTreeNode search(int k) { // returns NULL if k is not present.

        // Find the first key greater than or equal to k
        int i = 0;
        while (i < n && k > keys[i])
            i++;

        // If the found key is equal to k, return this node
        if (keys[i] == k)
            return this;

        // If the key is not found here and this is a leaf node
        if (leaf == true)
            return null;

        // Go to the appropriate child
        return C[i].search(k);

    }
}
 

2 代码格式


using System;// A BTree
class Btree
{public BTreeNode root; // Pointer to root nodepublic int t; // Minimum degree// Constructor (Initializes tree as empty)Btree(int t){this.root = null;this.t = t;}// function to traverse the treepublic void traverse(){if (this.root != null)this.root.traverse();Console.WriteLine();}// function to search a key in this treepublic BTreeNode search(int k){if (this.root == null)return null;elsereturn this.root.search(k);}
}// A BTree node
class BTreeNode
{int[] keys; // An array of keysint t; // Minimum degree (defines the range for number of keys)BTreeNode[] C; // An array of child pointersint n; // Current number of keysbool leaf; // Is true when node is leaf. Otherwise false// ConstructorBTreeNode(int t, bool leaf) {this.t = t;this.leaf = leaf;this.keys = new int[2 * t - 1];this.C = new BTreeNode[2 * t];this.n = 0;}// A function to traverse all nodes in a subtree rooted with this nodepublic void traverse() {// There are n keys and n+1 children, traverse through n keys// and first n childrenint i = 0;for (i = 0; i < this.n; i++) {// If this is not leaf, then before printing key[i],// traverse the subtree rooted with child C[i].if (this.leaf == false) {C[i].traverse();}Console.Write(keys[i] + " ");}// Print the subtree rooted with last childif (leaf == false)C[i].traverse();}// A function to search a key in the subtree rooted with this node.public BTreeNode search(int k) { // returns NULL if k is not present.// Find the first key greater than or equal to kint i = 0;while (i < n && k > keys[i])i++;// If the found key is equal to k, return this nodeif (keys[i] == k)return this;// If the key is not found here and this is a leaf nodeif (leaf == true)return null;// Go to the appropriate childreturn C[i].search(k);}
}

这篇关于C/C++,树算法——二叉树(BTree)的基本数据结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466897

相关文章

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个