C/C++,树算法——二叉树(BTree)的基本数据结构

2023-12-07 18:29

本文主要是介绍C/C++,树算法——二叉树(BTree)的基本数据结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 文本格式


using System;

// A BTree
class Btree
{
    public BTreeNode root; // Pointer to root node
    public int t; // Minimum degree

    // Constructor (Initializes tree as empty)
    Btree(int t)
    {
        this.root = null;
        this.t = t;
    }

    // function to traverse the tree
    public void traverse()
    {
        if (this.root != null)
            this.root.traverse();
        Console.WriteLine();
    }

    // function to search a key in this tree
    public BTreeNode search(int k)
    {
        if (this.root == null)
            return null;
        else
            return this.root.search(k);
    }
}

// A BTree node
class BTreeNode
{
    int[] keys; // An array of keys
    int t; // Minimum degree (defines the range for number of keys)
    BTreeNode[] C; // An array of child pointers
    int n; // Current number of keys
    bool leaf; // Is true when node is leaf. Otherwise false

    // Constructor
    BTreeNode(int t, bool leaf) {
        this.t = t;
        this.leaf = leaf;
        this.keys = new int[2 * t - 1];
        this.C = new BTreeNode[2 * t];
        this.n = 0;
    }

    // A function to traverse all nodes in a subtree rooted with this node
    public void traverse() {

        // There are n keys and n+1 children, traverse through n keys
        // and first n children
        int i = 0;
        for (i = 0; i < this.n; i++) {

            // If this is not leaf, then before printing key[i],
            // traverse the subtree rooted with child C[i].
            if (this.leaf == false) {
                C[i].traverse();
            }
            Console.Write(keys[i] + " ");
        }

        // Print the subtree rooted with last child
        if (leaf == false)
            C[i].traverse();
    }

    // A function to search a key in the subtree rooted with this node.
    public BTreeNode search(int k) { // returns NULL if k is not present.

        // Find the first key greater than or equal to k
        int i = 0;
        while (i < n && k > keys[i])
            i++;

        // If the found key is equal to k, return this node
        if (keys[i] == k)
            return this;

        // If the key is not found here and this is a leaf node
        if (leaf == true)
            return null;

        // Go to the appropriate child
        return C[i].search(k);

    }
}
 

2 代码格式


using System;// A BTree
class Btree
{public BTreeNode root; // Pointer to root nodepublic int t; // Minimum degree// Constructor (Initializes tree as empty)Btree(int t){this.root = null;this.t = t;}// function to traverse the treepublic void traverse(){if (this.root != null)this.root.traverse();Console.WriteLine();}// function to search a key in this treepublic BTreeNode search(int k){if (this.root == null)return null;elsereturn this.root.search(k);}
}// A BTree node
class BTreeNode
{int[] keys; // An array of keysint t; // Minimum degree (defines the range for number of keys)BTreeNode[] C; // An array of child pointersint n; // Current number of keysbool leaf; // Is true when node is leaf. Otherwise false// ConstructorBTreeNode(int t, bool leaf) {this.t = t;this.leaf = leaf;this.keys = new int[2 * t - 1];this.C = new BTreeNode[2 * t];this.n = 0;}// A function to traverse all nodes in a subtree rooted with this nodepublic void traverse() {// There are n keys and n+1 children, traverse through n keys// and first n childrenint i = 0;for (i = 0; i < this.n; i++) {// If this is not leaf, then before printing key[i],// traverse the subtree rooted with child C[i].if (this.leaf == false) {C[i].traverse();}Console.Write(keys[i] + " ");}// Print the subtree rooted with last childif (leaf == false)C[i].traverse();}// A function to search a key in the subtree rooted with this node.public BTreeNode search(int k) { // returns NULL if k is not present.// Find the first key greater than or equal to kint i = 0;while (i < n && k > keys[i])i++;// If the found key is equal to k, return this nodeif (keys[i] == k)return this;// If the key is not found here and this is a leaf nodeif (leaf == true)return null;// Go to the appropriate childreturn C[i].search(k);}
}

这篇关于C/C++,树算法——二叉树(BTree)的基本数据结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466897

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

从入门到精通C++11 <chrono> 库特性

《从入门到精通C++11<chrono>库特性》chrono库是C++11中一个非常强大和实用的库,它为时间处理提供了丰富的功能和类型安全的接口,通过本文的介绍,我们了解了chrono库的基本概念... 目录一、引言1.1 为什么需要<chrono>库1.2<chrono>库的基本概念二、时间段(Durat

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

c++中的set容器介绍及操作大全

《c++中的set容器介绍及操作大全》:本文主要介绍c++中的set容器介绍及操作大全,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录​​一、核心特性​​️ ​​二、基本操作​​​​1. 初始化与赋值​​​​2. 增删查操作​​​​3. 遍历方

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

C++11委托构造函数和继承构造函数的实现

《C++11委托构造函数和继承构造函数的实现》C++引入了委托构造函数和继承构造函数这两个重要的特性,本文主要介绍了C++11委托构造函数和继承构造函数的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、委托构造函数1.1 委托构造函数的定义与作用1.2 委托构造函数的语法1.3 委托构造函

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C