生产环境_从数据到层级结构JSON:使用Spark构建多层次树形数据_父子关系生成

本文主要是介绍生产环境_从数据到层级结构JSON:使用Spark构建多层次树形数据_父子关系生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码补充了!兄弟萌

造的样例数据

val data = Seq(("USA", "Male", "Asian", "Chinese"),("USA", "Female", "Asian", "Chinese"),("USA", "Male", "Black", "African"),("USA", "Female", "Black", "African"),("USA", "Male", "White", "European"),("USA", "Female", "White", "European"),("Europe", "Male", "Asian", "Chinese"),("Europe", "Female", "Asian", "Chinese"),("Europe", "Male", "Black", "African"),("Europe", "Female", "Black", "African"),("Europe", "Male", "White", "European"),("Europe", "Female", "White", "European")
)

代码核心逻辑

import org.apache.hadoop.io.serializer.Serialization
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.types.{StringType, StructField, StructType}import org.apache.spark.sql.{Dataset, Row, SparkSession}
import org.json4s.NoTypeHints
import org.json4s.DefaultFormats
import org.json4s.jackson.Serialization.writePretty定义Node类
//case class Node(title: String, key: String, children: Seq[Node])
/*作者:Matrix70
博客地址:https://blog.csdn.net/qq_52128187?type=blog
时间:20231205*/
object Parent_child_v7_xuqiu {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName("Parent_child_v3").setMaster("local[1]")val sc = new SparkContext(conf)val spark = SparkSession.builder.appName("Parent_child_v3").getOrCreate()import spark.implicits._val df1 = sc.textFile("C:\\zzcode\\workplace\\src\\main\\data\\country")val schema = StructType(Array(StructField("Country", StringType, nullable = true),StructField("Gender", StringType, nullable = true),StructField("Ethnicity", StringType, nullable = true),StructField("Race", StringType, nullable = true)))val rowRDD = df1.map(line => {val parts = line.split(",")Row(parts(0), parts(1), parts(2), parts(3))})val df = spark.createDataFrame(rowRDD, schema)df.show()// 构建节点层级结构并转换为JSON格式def toHierarchy(df: Dataset[Row]): String = {def buildHierarchy(country: String): Node = {val uniqueGenders = df.filter($"Country" === country).select("Gender").distinct().as[String].collect()val genderNodes = uniqueGenders.map { gender =>val filteredRows = df.filter($"Country" === country && $"Gender" === gender)val ethnicityNodes = filteredRows.select("Ethnicity").distinct().as[String].collect().map { ethnicity =>val children = filteredRows.filter($"Ethnicity" === ethnicity).select("Race").as[String].collect().map(race => Node(race, s"$country-$gender-$ethnicity-$race", Seq.empty))Node(ethnicity, s"$country-$gender-$ethnicity", children)}Node(gender, s"$country-$gender", ethnicityNodes)}Node(country, country, genderNodes)}val uniqueCountries = df.select("Country").distinct().as[String].collect()val roots = uniqueCountries.map(buildHierarchy)implicit val formats: DefaultFormats.type = DefaultFormatswritePretty(roots)}// 调用toHierarchy并打印结果val resultJSON = toHierarchy(df)println(resultJSON)spark.stop()}
}

提供给前端的html树结构样例

代码生成结果提供给前端的格式

[{"title": "USA","key": "USA","children": [{"title": "Male","key": "USA-Male","children": [{"title": "Asian","key": "USA-Male-Asian","children": [{"title": "Chinese","key": "USA-Male-Asian-Chinese","children": []}]},{"title": "Black","key": "USA-Male-Black","children": [{"title": "African","key": "USA-Male-Black-African","children": []}]},{"title": "White","key": "USA-Male-White","children": [{"title": "European","key": "USA-Male-White-European","children": []}]}]},{"title": "Female","key": "USA-Female","children": [{"title": "Asian","key": "USA-Female-Asian","children": [{"title": "Chinese","key": "USA-Female-Asian-Chinese","children": []}]},{"title": "Black","key": "USA-Female-Black","children": [{"title": "African","key": "USA-Female-Black-African","children": []}]},{"title": "White","key": "USA-Female-White","children": [{"title": "European","key": "USA-Female-White-European","children": []}]}]}]},{"title": "Europe","key": "Europe","children": [{"title": "Male","key": "Europe-Male","children": [{"title": "Asian","key": "Europe-Male-Asian","children": [{"title": "Chinese","key": "Europe-Male-Asian-Chinese","children": []}]},{"title": "Black","key": "Europe-Male-Black","children": [{"title": "African","key": "Europe-Male-Black-African","children": []}]},{"title": "White","key": "Europe-Male-White","children": [{"title": "European","key": "Europe-Male-White-European","children": []}]}]},{"title": "Female","key": "Europe-Female","children": [{"title": "Asian","key": "Europe-Female-Asian","children": [{"title": "Chinese","key": "Europe-Female-Asian-Chinese","children": []}]},{"title": "Black","key": "Europe-Female-Black","children": [{"title": "African","key": "Europe-Female-Black-African","children": []}]},{"title": "White","key": "Europe-Female-White","children": [{"title": "European","key": "Europe-Female-White-European","children": []}]}]}]}
]
//https://blog.csdn.net/qq_52128187?type=blog

补充html文件

json生成前端界面展示代码,可以保存在本地文件,命名为html即可在浏览器打开查看,就是我上面的层级结构的样子了。

<!DOCTYPE html>
<html>
<head><title>JSON to Tree Example</title><script src="https://d3js.org/d3.v6.min.js"></script><style>.node circle {fill: #fff;stroke: steelblue;stroke-width: 1.5px;}.node text {font-size: 12px;}</style>
</head>
<body><div id="tree-container"></div><script>
// JSON字符串
const jsonStr = `{"title": "USA","key": "USA","children": [{"title": "Asian","key": "USA-Asian","children": [{"title": "Chinese","key": "USA-Asian-Chinese","children": [{"title": "Beijing","key": "USA-Asian-Chinese-Beijing","children": []}]}]},{"title": "Black","key": "USA-Black","children": [{"title": "African","key": "USA-Black-African","children": [{"title": "Nigeria","key": "USA-Black-African-Nigeria","children": []}]}]},{"title": "White","key": "USA-White","children": [{"title": "European","key": "USA-White-European","children": [{"title": "Italy","key": "USA-White-European-Italy","children": []}]}]}]
}`;// 解析JSON字符串为树状结构
const data = JSON.parse(jsonStr);// 创建绘图容器
const svg = d3.select("#tree-container").append("svg").attr("width", 500).attr("height", 500);// 创建树布局
const treeLayout = d3.tree().size([400, 400]);// 将数据转换为层级关系
const root = d3.hierarchy(data);// 计算节点的位置
treeLayout(root);// 绘制节点和链接
const nodes = root.descendants();
const links = root.links();const nodeGroup = svg.selectAll(".node").data(nodes).enter().append("g").attr("transform", d => `translate(${d.y}, ${d.x})`);nodeGroup.append("circle").attr("r", 5).style("fill", "#fff").style("stroke", "steelblue").style("stroke-width", "1.5px");nodeGroup.append("text").attr("x", 13).attr("y", 4).style("font-size", "12px").text(d => d.data.title);svg.selectAll(".link").data(links).enter().append("path").attr("class", "link").attr("d", d => {return `M${d.source.y},${d.source.x}L${d.target.y},${d.target.x}`;}).style("fill", "none").style("stroke", "#ccc").style("stroke-width", "1px");
</script>
</body>
</html>

其实我要的结果就是能匹配上数据格式,如下图。前端的同事他们渲染后,基本就是这个样子

参考文章获连接:

Ant Design Vue — An enterprise-class UI components based on Ant Design and Vue.js,这个网页是树形控件的结构,给我提供一个基本构建思路吧

ok!!!

这篇关于生产环境_从数据到层级结构JSON:使用Spark构建多层次树形数据_父子关系生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/461615

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面