生产环境_从数据到层级结构JSON:使用Spark构建多层次树形数据_父子关系生成

本文主要是介绍生产环境_从数据到层级结构JSON:使用Spark构建多层次树形数据_父子关系生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码补充了!兄弟萌

造的样例数据

val data = Seq(("USA", "Male", "Asian", "Chinese"),("USA", "Female", "Asian", "Chinese"),("USA", "Male", "Black", "African"),("USA", "Female", "Black", "African"),("USA", "Male", "White", "European"),("USA", "Female", "White", "European"),("Europe", "Male", "Asian", "Chinese"),("Europe", "Female", "Asian", "Chinese"),("Europe", "Male", "Black", "African"),("Europe", "Female", "Black", "African"),("Europe", "Male", "White", "European"),("Europe", "Female", "White", "European")
)

代码核心逻辑

import org.apache.hadoop.io.serializer.Serialization
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.types.{StringType, StructField, StructType}import org.apache.spark.sql.{Dataset, Row, SparkSession}
import org.json4s.NoTypeHints
import org.json4s.DefaultFormats
import org.json4s.jackson.Serialization.writePretty定义Node类
//case class Node(title: String, key: String, children: Seq[Node])
/*作者:Matrix70
博客地址:https://blog.csdn.net/qq_52128187?type=blog
时间:20231205*/
object Parent_child_v7_xuqiu {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName("Parent_child_v3").setMaster("local[1]")val sc = new SparkContext(conf)val spark = SparkSession.builder.appName("Parent_child_v3").getOrCreate()import spark.implicits._val df1 = sc.textFile("C:\\zzcode\\workplace\\src\\main\\data\\country")val schema = StructType(Array(StructField("Country", StringType, nullable = true),StructField("Gender", StringType, nullable = true),StructField("Ethnicity", StringType, nullable = true),StructField("Race", StringType, nullable = true)))val rowRDD = df1.map(line => {val parts = line.split(",")Row(parts(0), parts(1), parts(2), parts(3))})val df = spark.createDataFrame(rowRDD, schema)df.show()// 构建节点层级结构并转换为JSON格式def toHierarchy(df: Dataset[Row]): String = {def buildHierarchy(country: String): Node = {val uniqueGenders = df.filter($"Country" === country).select("Gender").distinct().as[String].collect()val genderNodes = uniqueGenders.map { gender =>val filteredRows = df.filter($"Country" === country && $"Gender" === gender)val ethnicityNodes = filteredRows.select("Ethnicity").distinct().as[String].collect().map { ethnicity =>val children = filteredRows.filter($"Ethnicity" === ethnicity).select("Race").as[String].collect().map(race => Node(race, s"$country-$gender-$ethnicity-$race", Seq.empty))Node(ethnicity, s"$country-$gender-$ethnicity", children)}Node(gender, s"$country-$gender", ethnicityNodes)}Node(country, country, genderNodes)}val uniqueCountries = df.select("Country").distinct().as[String].collect()val roots = uniqueCountries.map(buildHierarchy)implicit val formats: DefaultFormats.type = DefaultFormatswritePretty(roots)}// 调用toHierarchy并打印结果val resultJSON = toHierarchy(df)println(resultJSON)spark.stop()}
}

提供给前端的html树结构样例

代码生成结果提供给前端的格式

[{"title": "USA","key": "USA","children": [{"title": "Male","key": "USA-Male","children": [{"title": "Asian","key": "USA-Male-Asian","children": [{"title": "Chinese","key": "USA-Male-Asian-Chinese","children": []}]},{"title": "Black","key": "USA-Male-Black","children": [{"title": "African","key": "USA-Male-Black-African","children": []}]},{"title": "White","key": "USA-Male-White","children": [{"title": "European","key": "USA-Male-White-European","children": []}]}]},{"title": "Female","key": "USA-Female","children": [{"title": "Asian","key": "USA-Female-Asian","children": [{"title": "Chinese","key": "USA-Female-Asian-Chinese","children": []}]},{"title": "Black","key": "USA-Female-Black","children": [{"title": "African","key": "USA-Female-Black-African","children": []}]},{"title": "White","key": "USA-Female-White","children": [{"title": "European","key": "USA-Female-White-European","children": []}]}]}]},{"title": "Europe","key": "Europe","children": [{"title": "Male","key": "Europe-Male","children": [{"title": "Asian","key": "Europe-Male-Asian","children": [{"title": "Chinese","key": "Europe-Male-Asian-Chinese","children": []}]},{"title": "Black","key": "Europe-Male-Black","children": [{"title": "African","key": "Europe-Male-Black-African","children": []}]},{"title": "White","key": "Europe-Male-White","children": [{"title": "European","key": "Europe-Male-White-European","children": []}]}]},{"title": "Female","key": "Europe-Female","children": [{"title": "Asian","key": "Europe-Female-Asian","children": [{"title": "Chinese","key": "Europe-Female-Asian-Chinese","children": []}]},{"title": "Black","key": "Europe-Female-Black","children": [{"title": "African","key": "Europe-Female-Black-African","children": []}]},{"title": "White","key": "Europe-Female-White","children": [{"title": "European","key": "Europe-Female-White-European","children": []}]}]}]}
]
//https://blog.csdn.net/qq_52128187?type=blog

补充html文件

json生成前端界面展示代码,可以保存在本地文件,命名为html即可在浏览器打开查看,就是我上面的层级结构的样子了。

<!DOCTYPE html>
<html>
<head><title>JSON to Tree Example</title><script src="https://d3js.org/d3.v6.min.js"></script><style>.node circle {fill: #fff;stroke: steelblue;stroke-width: 1.5px;}.node text {font-size: 12px;}</style>
</head>
<body><div id="tree-container"></div><script>
// JSON字符串
const jsonStr = `{"title": "USA","key": "USA","children": [{"title": "Asian","key": "USA-Asian","children": [{"title": "Chinese","key": "USA-Asian-Chinese","children": [{"title": "Beijing","key": "USA-Asian-Chinese-Beijing","children": []}]}]},{"title": "Black","key": "USA-Black","children": [{"title": "African","key": "USA-Black-African","children": [{"title": "Nigeria","key": "USA-Black-African-Nigeria","children": []}]}]},{"title": "White","key": "USA-White","children": [{"title": "European","key": "USA-White-European","children": [{"title": "Italy","key": "USA-White-European-Italy","children": []}]}]}]
}`;// 解析JSON字符串为树状结构
const data = JSON.parse(jsonStr);// 创建绘图容器
const svg = d3.select("#tree-container").append("svg").attr("width", 500).attr("height", 500);// 创建树布局
const treeLayout = d3.tree().size([400, 400]);// 将数据转换为层级关系
const root = d3.hierarchy(data);// 计算节点的位置
treeLayout(root);// 绘制节点和链接
const nodes = root.descendants();
const links = root.links();const nodeGroup = svg.selectAll(".node").data(nodes).enter().append("g").attr("transform", d => `translate(${d.y}, ${d.x})`);nodeGroup.append("circle").attr("r", 5).style("fill", "#fff").style("stroke", "steelblue").style("stroke-width", "1.5px");nodeGroup.append("text").attr("x", 13).attr("y", 4).style("font-size", "12px").text(d => d.data.title);svg.selectAll(".link").data(links).enter().append("path").attr("class", "link").attr("d", d => {return `M${d.source.y},${d.source.x}L${d.target.y},${d.target.x}`;}).style("fill", "none").style("stroke", "#ccc").style("stroke-width", "1px");
</script>
</body>
</html>

其实我要的结果就是能匹配上数据格式,如下图。前端的同事他们渲染后,基本就是这个样子

参考文章获连接:

Ant Design Vue — An enterprise-class UI components based on Ant Design and Vue.js,这个网页是树形控件的结构,给我提供一个基本构建思路吧

ok!!!

这篇关于生产环境_从数据到层级结构JSON:使用Spark构建多层次树形数据_父子关系生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/461615

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

Windows环境下解决Matplotlib中文字体显示问题的详细教程

《Windows环境下解决Matplotlib中文字体显示问题的详细教程》本文详细介绍了在Windows下解决Matplotlib中文显示问题的方法,包括安装字体、更新缓存、配置文件设置及编码調整,并... 目录引言问题分析解决方案详解1. 检查系统已安装字体2. 手动添加中文字体(以SimHei为例)步骤

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Java JDK1.8 安装和环境配置教程详解

《JavaJDK1.8安装和环境配置教程详解》文章简要介绍了JDK1.8的安装流程,包括官网下载对应系统版本、安装时选择非系统盘路径、配置JAVA_HOME、CLASSPATH和Path环境变量,... 目录1.下载JDK2.安装JDK3.配置环境变量4.检验JDK官网下载地址:Java Downloads

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome