力扣973. 最接近原点的 K 个点(java 排序法,大顶堆法)

2023-12-06 05:20

本文主要是介绍力扣973. 最接近原点的 K 个点(java 排序法,大顶堆法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Problem: 973. 最接近原点的 K 个点

文章目录

  • 题目描述
  • 思路
  • 解题方法
  • 复杂度
  • Code

题目描述

给定一个数组 points ,其中 points[i] = [xi, yi] 表示 X-Y 平面上的一个点,并且是一个整数 k ,返回离原点 (0,0) 最近的 k 个点。
这里,平面上两点之间的距离是 欧几里德距离( √(x1 - x2)2 + (y1 - y2)2 )。
你可以按 任何顺序 返回答案。除了点坐标的顺序之外,答案 确保 是 唯一 的。
在这里插入图片描述
在这里插入图片描述

思路

由于本题的数据是静态的即为了获取前TOP K我们既可以利用排序法(一般较多使用快速排序,多用于处理静态数据),也可以使用(多用于处理动态的数据)的解法来解决!

排序法:

我们将每个顶点距离原点的欧几里得距离排序,取出前K小的即可(实际操作中只需要对顶点坐标的坐标差的平方和排序即刻

大顶堆解法:

1.我们创建一个大顶堆,先将前K个顶点坐标差的平方和添加进大顶堆
2.再依次计算第K + 1到N个顶点坐标差的平方和,并依次与当前大顶堆顶的元素比较,若小于当前大顶堆的堆顶元素,则更新堆顶元素为当前的顶点的坐标差的平方和

解题方法

排序法:

1.利用java内置的排序方法,并重新定义一个Comparator接口比较计算了两个点到原点的欧几里得距离的平方
2.返回前k的顶点坐标(二维数组)

大顶堆解法:

1.我们创建一个大顶堆,堆中存取一个int类型的数组,数组的下标0位置存储该顶点到原点欧几里得距离的平方,下标为1位置存储该顶点在二维数组中的一维索引
2.再依次计算第K + 1到N个顶点坐标差的平方和,并依次与当前大顶堆顶的元素比较,若小于当前大顶堆的堆顶元素,则更新堆顶元素为当前的顶点的坐标差的平方和,与该顶点在二维数组中的一维索引
3.定义二维结果数组,存储当前大顶堆的前k大个元素,并返回(具体操作看代码)

复杂度

排序法:
时间复杂度:

O ( n l o g n ) O(nlogn) O(nlogn)

空间复杂度:

O ( l o g n ) O(logn) O(logn)

大顶堆解法:
时间复杂度:

O ( n l o g k ) O(nlogk) O(nlogk)

空间复杂度:

O ( k ) O(k) O(k)

Code

排序法

class Solution {/*** Get the first k points closest to the origin using sort** @param points Vertex coordinate array* @param k      Given number* @return int[][]*/public int[][] kClosest(int[][] points, int k) {Arrays.sort(points, new Comparator<int[]>() {public int compare(int[] point1, int[] point2) {return (point1[0] * point1[0] + point1[1] * point1[1]) - (point2[0] * point2[0] + point2[1] * point2[1]);}});return Arrays.copyOfRange(points, 0, k);}
}
class Solution {/*** Gets the first k vertices closest to the origin** @param points Vertex coordinate array* @param k      Given number* @return int[][]*/public int[][] kClosest(int[][] points, int k) {//Create an maxQueuePriorityQueue<int[]> maxQueue = new PriorityQueue<>(new Comparator<int[]>() {@Overridepublic int compare(int[] o1, int[] o2) {return o2[0] - o1[0];}});//Adds the square of the Euclidean distance for the first k coordinates to the maxQueuefor (int i = 0; i < k; ++i) {maxQueue.offer(new int[]{points[i][0] * points[i][0] + points[i][1] * points[i][1], i});}int n = points.length;/*1.Add the square of the Euclidean distance from k+1 to n vertices to the maxQueue2.If the value is less than the value for the top of the maxQueue, its value is updated*/for (int i = k; i < n; ++i) {int distance = points[i][0] * points[i][0] + points[i][1] * points[i][1];if (distance < maxQueue.peek()[0]) {maxQueue.poll();maxQueue.offer(new int[]{distance, i});}}int[][] result = new int[k][2];for (int i = 0; i < k; ++i) {result[i] = points[maxQueue.poll()[1]];}return result;}
}

这篇关于力扣973. 最接近原点的 K 个点(java 排序法,大顶堆法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/460586

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig