力扣973. 最接近原点的 K 个点(java 排序法,大顶堆法)

2023-12-06 05:20

本文主要是介绍力扣973. 最接近原点的 K 个点(java 排序法,大顶堆法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Problem: 973. 最接近原点的 K 个点

文章目录

  • 题目描述
  • 思路
  • 解题方法
  • 复杂度
  • Code

题目描述

给定一个数组 points ,其中 points[i] = [xi, yi] 表示 X-Y 平面上的一个点,并且是一个整数 k ,返回离原点 (0,0) 最近的 k 个点。
这里,平面上两点之间的距离是 欧几里德距离( √(x1 - x2)2 + (y1 - y2)2 )。
你可以按 任何顺序 返回答案。除了点坐标的顺序之外,答案 确保 是 唯一 的。
在这里插入图片描述
在这里插入图片描述

思路

由于本题的数据是静态的即为了获取前TOP K我们既可以利用排序法(一般较多使用快速排序,多用于处理静态数据),也可以使用(多用于处理动态的数据)的解法来解决!

排序法:

我们将每个顶点距离原点的欧几里得距离排序,取出前K小的即可(实际操作中只需要对顶点坐标的坐标差的平方和排序即刻

大顶堆解法:

1.我们创建一个大顶堆,先将前K个顶点坐标差的平方和添加进大顶堆
2.再依次计算第K + 1到N个顶点坐标差的平方和,并依次与当前大顶堆顶的元素比较,若小于当前大顶堆的堆顶元素,则更新堆顶元素为当前的顶点的坐标差的平方和

解题方法

排序法:

1.利用java内置的排序方法,并重新定义一个Comparator接口比较计算了两个点到原点的欧几里得距离的平方
2.返回前k的顶点坐标(二维数组)

大顶堆解法:

1.我们创建一个大顶堆,堆中存取一个int类型的数组,数组的下标0位置存储该顶点到原点欧几里得距离的平方,下标为1位置存储该顶点在二维数组中的一维索引
2.再依次计算第K + 1到N个顶点坐标差的平方和,并依次与当前大顶堆顶的元素比较,若小于当前大顶堆的堆顶元素,则更新堆顶元素为当前的顶点的坐标差的平方和,与该顶点在二维数组中的一维索引
3.定义二维结果数组,存储当前大顶堆的前k大个元素,并返回(具体操作看代码)

复杂度

排序法:
时间复杂度:

O ( n l o g n ) O(nlogn) O(nlogn)

空间复杂度:

O ( l o g n ) O(logn) O(logn)

大顶堆解法:
时间复杂度:

O ( n l o g k ) O(nlogk) O(nlogk)

空间复杂度:

O ( k ) O(k) O(k)

Code

排序法

class Solution {/*** Get the first k points closest to the origin using sort** @param points Vertex coordinate array* @param k      Given number* @return int[][]*/public int[][] kClosest(int[][] points, int k) {Arrays.sort(points, new Comparator<int[]>() {public int compare(int[] point1, int[] point2) {return (point1[0] * point1[0] + point1[1] * point1[1]) - (point2[0] * point2[0] + point2[1] * point2[1]);}});return Arrays.copyOfRange(points, 0, k);}
}
class Solution {/*** Gets the first k vertices closest to the origin** @param points Vertex coordinate array* @param k      Given number* @return int[][]*/public int[][] kClosest(int[][] points, int k) {//Create an maxQueuePriorityQueue<int[]> maxQueue = new PriorityQueue<>(new Comparator<int[]>() {@Overridepublic int compare(int[] o1, int[] o2) {return o2[0] - o1[0];}});//Adds the square of the Euclidean distance for the first k coordinates to the maxQueuefor (int i = 0; i < k; ++i) {maxQueue.offer(new int[]{points[i][0] * points[i][0] + points[i][1] * points[i][1], i});}int n = points.length;/*1.Add the square of the Euclidean distance from k+1 to n vertices to the maxQueue2.If the value is less than the value for the top of the maxQueue, its value is updated*/for (int i = k; i < n; ++i) {int distance = points[i][0] * points[i][0] + points[i][1] * points[i][1];if (distance < maxQueue.peek()[0]) {maxQueue.poll();maxQueue.offer(new int[]{distance, i});}}int[][] result = new int[k][2];for (int i = 0; i < k; ++i) {result[i] = points[maxQueue.poll()[1]];}return result;}
}

这篇关于力扣973. 最接近原点的 K 个点(java 排序法,大顶堆法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/460586

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2