pku2480(欧拉函数的应用,推公式,积性函数)

2023-12-05 23:48

本文主要是介绍pku2480(欧拉函数的应用,推公式,积性函数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://162.105.81.212/JudgeOnline/problem?id=2480

题意:给定N(int)  求 ∑gcd(i,N) 1<=i<=N。

分析:一看这题的数据就知道不能暴力的,要用到欧拉函数分解才行的,只是自己的数论还不成熟,想了好久都没有解法;

最后看了牛人的解题报告才弄明白的;

此题解法:对于gcd(M,N)=i 有Ci个M满足此式 答案便是∑(Ci*i)gcd(M,N)=i  <=> gcd(M/i,N/i)=1 而求gcd(M/i,N/i)=1 有多少个M/i满足 这便是欧拉函数Phi()的定义所以就转化为了求Phi(N/i)枚举每个 M|N  求出Phi(N/i)  答案便是 ∑(Phi(N/i)*i)那么如何枚举每个  M|N 呢?

很简单 枚举1到sqrt(N)的所有整数,所有的约数便是 i|N 和 (N/i)|N。

 

还有别的解法是积性函数,因子分解;

 

(1)因为有性质

 gcd(i,m /times n)=gcd(i,m) /times gcd(i,n) 当m /perp n

所以gcd是积性函数

因为积性函数的和函数也是积性函数(《初等数论及其应用》P182),所以所求函数

F(N)=/sum_{i=1}^{N}gcd(i,N)是积性函数

问题简化到素数阶段,须求F(p^k),此时用到欧拉公式.因为有F(N)=/sum _{d|N}d/cdot /varphi (/frac{N}{d})

(易见因为/varphi (/frac{N}{d})代表的是从1到N中和N最大公约数gcd为d的数的个数)

所以F(p^k)=/sum _{i=0}^k p^i/cdot /varphi (p^{k-i}),又因为/varphi (p^k)=p^k-p^{k-1}则可求出。

(2)

 

容易证明gcd(i,n)是积性函数,即: 如果n = m1*m2 且gcd(i,m1*m2) = gcd(i,m1)*gcd(i,m2). 然后根据具体数学上的结论: 积性函数的和也是积性的,所以如果我们设所求答案是f(n) 则: f(n) = f(m1)*(m2) 其中,m1*m2 = n 且m1,m2互质!经过因子分解,那种只要求到f(p^k)就可以利用积性把所有结果相乘得到最后答案。

还要一个结论: f(n) = sum(p * phi(n/p))  其中p是n的因子,phi(n/p) 是从1到n有多少个数和n的gcd是p,  这个结论比较好证明的。

        所以求f(p^k)转化成求phi(p^i) i =0....k;  而根据公式phi(p^i) = (p-1)*p^(i-1)可以求出,这样整个问题就解决了。  具体算法过程要先把1到50000的素数求出来便于分解因子。

 

 

这篇关于pku2480(欧拉函数的应用,推公式,积性函数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/459612

相关文章

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库

SpringBoot整合MybatisPlus的基本应用指南

《SpringBoot整合MybatisPlus的基本应用指南》MyBatis-Plus,简称MP,是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,下面小编就来和大家介绍一下... 目录一、MyBATisPlus简介二、SpringBoot整合MybatisPlus1、创建数据库和

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高