降本提效!阿里提出大模型集成新方法

2023-12-05 22:44

本文主要是介绍降本提效!阿里提出大模型集成新方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着对大型语言模型(LLM)研究的不断深入,越来越多的工作不再局限于模型本身的性能提升,而是更加关注如何在任务中实现更高效、可靠的性能。即使是通用型的离线 LLM,也在各种领域和任务中具有不同的专业知识,因此,将多个 LLM 集成在一起,能够实现更为一致的性能提升。然而,尽管大多数 LLM 集成方法可以提高性能,但主要都是对模型输出进行奖励排名,这导致了大量计算开销。

来自阿里的研究团队近期提出了一个集成 LLM 的降本增效新方法,具体来说,通过一种奖励引导的路径决策方法 ZOOTER,只需对在特定任务上表现最优越的模型进行推理,而非对所有模型都生成输出,如图 1 所示。为实现这一目标,引入了一个相对较小的路径决策组件,用于确定哪个模型在处理特定任务时具有最专业的知识。这样一来,整个集成的推理成本大幅降低,从而提高了计算效率。

大模型研究测试传送门

GPT-4传送门(免墙,可直接测试,遇浏览器警告点高级/继续访问即可):
http://hujiaoai.cn

图1 LLM 集成的示例

▲图1 LLM 集成的示例

论文题目:
Routing to the Expert: Efficient Reward-guided Ensemble of Large Language Models

论文链接:
https://arxiv.org/abs/2311.08692


背景知识

在先前的研究中,LLM 集成的一个挑战就是海量参数带来的计算效率问题,本文所提出的方法在模型推理之前,能够通过训练提问集上的奖励信号(即模型在特定任务或领域上的专业知识),对模型进行训练。这样,模型在推理阶段就能够直接利用先前获得的专业知识,从而避免在每次推理中都需要生成大量输出的非必要开销。

奖励模型排名

奖励模型源于强化学习中的奖励函数,可以依据当前的状态得到一个分数,来说明该状态产生多少价值。LLM 可以构建奖励模型来对问答对作出得分评价。在 LLM 微调中的奖励模型是对输入的提问和回答计算出一个分数。输入的回答与提问匹配度越高,则奖励模型输出的分数也就越高

奖励模型排名(Reward Model Ranking, RMR)是一种用于 LLM 集成的方法,其目的是利用不同模型的输出,通过奖励模型的反馈来确定最适合特定任务的模型。在这里,奖励模型被用来对模型的生成结果进行评估和排名,以确定哪个模型在特定任务或领域中表现最好。通过找到一个奖励函数 来估计真实偏好 ,以便为每个提问找到最佳模型。

提问路由

提问路由的目标是找到一个路由函数 ,对于提问集 中的每个 ,该函数能够确定最适合处理该提问的模型 。如果不同的 LLM 在不同领域和任务中具有专业知识,路由函数将能够预测提问属于 LLM 专业知识的概率。与现有的 RMR 方法相比,提问路由函数缓解了计算效率问题。路由函数通过分析每个提问的属性,尝试为其分配最适合的特定领域或任务的模型,从而在整个集成过程中提高效率。

ZOOTER 方法

ZOOTER 通过学习奖励模型排名,从而解释每个模型的潜在专业知识。如图 2 所示,ZOOTER 首先对包含多种提问的训练集进行推断,以生成每个候选 LLM 的回复。接着,通过现有的奖励模型对这些回复进行单一数值的奖励,如图 2 中的蓝色虚线所示。为了进行平滑和去噪,奖励首先通过基于标签的先验进行增强。然后,标准化的奖励分布被用作在路由函数的知识蒸馏训练中的监督,如图 2 中的绿色虚线所示。在推断过程中,路由函数对输入提问进行分类,并将其分配到在该提问上具有最强专业知识潜力的 LLM。最终,由该 LLM 生成专业的回复。

图2 ZOOTER 的概述

▲图2 ZOOTER 的概述

奖励蒸馏

为了估计每个模型的专业知识并训练路由函数,我们需要在一个多样化的训练集 上应用奖励偏好排名。首先在每个提问 上推断所有候选模型,然后通过一个现成的奖励模型为每个提问和模型分配奖励:

然后,通过知识蒸馏使用 KL 散度作为损失函数,在训练集上训练路由器函数 :

此蒸馏过程有助于 ZOOTER 学习每个模型的潜在专业知识。

基于标签(Tag)的标签(Label)增强

作者还指出,语言奖励模型提供的奖励具有不确定性,可能引入噪音

在这里,标签是指对提问的一种附加信息或标注,可以帮助更精确地指导模型在特定任务或领域的表现。通过引入与提问相关的标签信息,尤其是在奖励不确定性的情况下,提高奖励模型的鲁棒性和性能。

具体来说,该方法使用本地标签器对每个提问进行标记来生成标签集。然后,将具有相同标签的提问上的奖励进行聚合,生成 “tag-wise 奖励”。最后,通过线性组合将 tag-wise 奖励与原始奖励结合,用于在路由函数的训练中,以更有效地挖掘潜在的模型专业知识。

实验

综合比较

表1 ZOOTER 和奖励模型排名的主要结果

▲表1 ZOOTER 和奖励模型排名的主要结果

在表 1 中,作者展示了 ZOOTER 和奖励模型排名的主要实验结果,主要包括跨四组基准的六个候选路由的性能。ZOOTER 在平均水平上表现优越,超越了最佳单一模型,甚至在与奖励模型排名集成相比也取得了更好的性能,并且其计算开销明显较小。

LLM 存在互补的潜力:实验结果有力地支持了奖励模型之间存在互补潜力的观点,同时也验证了 ZOOTER 通过使用现成奖励模型进行路由函数训练,可实现更为有效的模型集成。然而,需要注意的是,RMR 方法在 MMLU、GSM8K 和 HumanEval 等基准上的失败,对于知识、数学和编程问题的精确判断仍然具有挑战性。

奖励模型不确定性如何影响 ZOOTER 的训练

作者注意到奖励模型可能存在不确定性,由于使用奖励模型分数作为标准来训练路由函数,这种不确定性会引入噪音。因此通过计算在 MT-Bench 中每个提问在 QwenRM 中所有候选 LLM 的奖励熵来展示了这种不确定性的存在,如图 3 所示,图中显示了奖励熵较低的样本倾向于具有较高的 MT-Bench 得分。作者将这一结果解释为较高的奖励熵表示奖励中的不确定性更大。由此引入了标签增强,以利用基于标签的先验来调整奖励熵

图3 奖励熵与 MT-bench 上奖励偏好排名得分之间的分析

▲图3 奖励熵与 MT-bench 上奖励偏好排名得分之间的分析

在标签增强中有一个超参数 ,代表了样本级奖励和标签级奖励之间的权衡。如表 2 所示,我们发现当 等于 0.3 时,ZOOTER 性能最佳,这证明了样本级和标签级奖励的组合对奖励蒸馏是有益的。消融实验进一步显示了基于标签的标签增强的必要性。

表2 在所有基准上使用不同  值的标签增强的平均任务率(MTR)

▲表2 在所有基准上使用不同 值的标签增强的平均任务率(MTR)

总结

本文通过实验证明了,所提出的 ZOOTER 方法在平均水平上超越了最佳单一模型,甚至可以胜过通过奖励模型排名集成的模型,并且有着明显较小的计算开销。在如今追求高效、节能的时代,本文的方法为我们开辟了一个新的探索方向,探讨如何更有效地集成 LLM,为解决高计算开销问题提供了一种创新性的解决方案。

这篇关于降本提效!阿里提出大模型集成新方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/459425

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费