机器学习|FP-Growth

2023-12-04 10:50
文章标签 学习 机器 growth fp

本文主要是介绍机器学习|FP-Growth,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在上篇文章频繁项集挖掘实战和关联规则产生.中我们实现了Apriori的购物篮实战和由频繁项集产生关联规则, 本文沿《数据挖掘概念与技术》的主线继续学习FP-growth。因《数据挖掘概念与技术》中FP-growth内容过于琐碎且不易理解,我们的内容主要参考了《机器学习实战》第12章的内容。本文是对书中内容的通俗理解和代码实现,更详细的理论知识请参考书中内容, 本文涉及的完整jupyter代码和《机器学习实战》全书配套代码包, 可以在我们的 “数据臭皮匠” 中输入"第六章3" 拿到

Apriori算法是经典算法, 但它也有比较明显的缺点,主要有两个:

1、它可能需要产生大量候选集, 如果有10^4个频繁1项集, Apriori需要产生多达10^7个候选2项集

2、 每一步从候选k项集, 到频繁k项集都需要完整的扫描数据集, 反复扫描完整数据集开销很大

有没有某种方法可以不产生大量候选项集且不需要反复扫描完整数据集就可以产生频繁项集呢, 有! 他就是FP-growth(Frequent-Parttern Growth) 频繁模式增长。

FP-growth先将数据集压缩到一颗FP树(频繁模式数),再遍历满足最小支持度的频繁一项集,逐个从FP数中找到其条件模式基,进而产生条件FP树,并产生频繁项集。

一、基础概念

1、FP树

FP 树将每个集合以路径的方式存储在树中, 从根节点开始, 每个条路径上的节点按其出现频数递减. 存在相似元素的集合会共享树的一部分, 只有当集合之间出现不同时, 树才会分叉. 图示如下(左图是数据, 右图是最小支持度为 3 的 FP树)

image

2、Header表

链表, 每个节点存放的是某一元素项, 及其在所有集合中出现的总次数, 以及指向FP树各个分支上同样元素的指针. 从Header表, 可以快速定位到各个分枝上的元素. 头指针表图示如下:

image

3、条件模式基

从header表中的单个频繁元素开始, 对每个路径中的此元素, 向根节点回溯, 每一条回溯路径上的节点都组成一个集合. 即前缀路径.

4、条件FP树

使用 3 中的得到的各个前缀路径, 作为新的数据集合, 并按 1 中的方法构造出来的 FP 树, 即为 条件FP树.在构造条件 FP 树时, 同样要通过最小支持度来淘汰非频繁项

二、算法描述

1. 构造FP树

1.1) 遍历完整数据集, 对每个元素计数,每个元素在数据集中出现的次数组成header表(仅包含大于最小支持度的项)

image

1.2)遍历每个集合, 对此集合中的元素, 按其在总数据集中出现的次数排序, 并去除掉未达到最小支持度的元素.

1.3)对每个集合, 从树的根节点依次往下插入, 如果节点已存在, 则递增节点的计数值, 否则创建一个分支,如下图:

image

1.4)新加入节点的同时, 需要将新结点与header表建立连接, 如果header表的该元素已经有节点与之连接, 新结点就连接到该元素对应连接链的末端

1.5)循环 (3) -> (4), 直至所有集合操作完毕
image.png

# 树节点
class treeNode:def __init__(self, nameValue, numOccur, parentNode):self.name = nameValueself.count = numOccur         # 计数值self.nodeLink = None          # 连接相似变量

这篇关于机器学习|FP-Growth的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/453201

相关文章

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识