TODS:一款功能强大的多元时间序列异常检测工具

2023-12-04 05:59

本文主要是介绍TODS:一款功能强大的多元时间序列异常检测工具,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TODS是一个全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。该系统可以处理三种常见的时间序列异常检测场景:点的异常检测(异常是时间点)、模式的异常检测(异常是子序列)、系统的异常检测(异常是时间序列的集合)。TODS提供了一系列相应的算法。

TODS具有如下特点:

  • 全栈式机器学习系统:支持从数据预处理、特征提取、到检测算法和人为规则每一个步骤并提供相应的接口。

  • 广泛的算法支持:包括 PyOD 提供的点的异常检测算法、最先进的模式的异常检测算法(例如 DeepLog, Telemanon ),以及用于系统的异常检测的集合算法。

  • 自动化的机器学习:旨在提供无需专业知识的过程,通过自动搜索所有现有模块中的最佳组合,基于给定数据构造最优管道。

技术交流

技术要学会分享、交流,不建议闭门造车。

本文技术由粉丝群小伙伴推荐分享汇总。有趣使用工具、源码、数据、技术交流提升,均可加交流群获取,群友已超过3000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:dkl88191,备注:来自CSDN +技术交流
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

概述

TODS 提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms)和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算法以及让人类专家来校准系统。

通过这些模块提供的功能包括:通用数据预处理、时间序列数据平滑/转换、从时域/频域中提取特征、各种检测算法,以及涉及人类专业知识来校准系统。可以时间序列数据执行三种常见的异常值检测场景:逐点检测(时间点作为异常值)、模式检测(子序列作为异常值)和系统检测(时间序列集作为异常值)。

当时间序列中存在潜在的系统故障或小故障时,通常会出现逐点异常值。这种异常值存在于全局(与整个时间序列中的数据点相比)或局部(与相邻点相比)的单个数据点上。全局异常值通常很明显,检测全局异常值的常见做法是获取数据集的统计值(例如,最小值/最大值/平均值/标准偏差)并设置检测异常点的阈值。

局部异常值通常出现在特定上下文中,具有相同值的数据点如果不在特定上下文中显示,则不会被识别为异常值。检测局部异常值的常用策略是识别上下文(通过季节性趋势分解、自相关),然后应用统计/机器学习方法(例如 AutoRegression、IsolationForest、OneClassSVM)来检测异常值。

当数据中存在异常行为时,通常会出现模式异常值。模式异常值是指与其他子序列相比其行为异常的时间序列数据的子序列(连续点)。检测模式异常值的常见做法,包括不和谐分析(例如,矩阵配置文件、HotSAX)和子序列聚类。

Discords 分析利用滑动窗口将时间序列分割成多个子序列,并计算子序列之间的距离(例如,欧几里德距离)以找到时间序列数据中的不一致。子序列聚类也将子序列分割应用于时间序列数据,并采用子序列作为每个时间点的特征,其中滑动窗口的大小为特征的数量。然后,采用无监督机器学习方法,例如聚类(例如,KMeans、PCA)或逐点异常值检测算法来检测模式异常值。

当许多系统之一处于异常状态时,系统异常值会不断发生,其中系统被定义为多元时间序列数据。检测系统异常值的目标是从许多类似的系统中找出处于异常状态的系统。例如,从具有多条生产线的工厂检测异常生产线。检测这种异常值的常用方法是执行逐点和模式异常值检测以获得每个时间点/子序列的异常值分数,然后采用集成技术为每个系统生成整体异常值分数以进行比较和检测。

Scikit-learn API

在构建机器学习管道的开始,需要进行大量实验来调整或分析算法。在 TODS 中,Scikit-learn 类似 API 可用于大多数模块,允许用户灵活地将单个函数调用到实验脚本中。这是一个调用矩阵配置文件的示例,用于使用 UCR 数据集识别模式异常值。

# !pip install -e git+https://github.com/datamllab/tods.git#egg=tods  
import numpy as np   
from tods.sk_interface.detection_algorithm.MatrixProfile_skinterface import MatrixProfileSKI   
from sklearn.metrics import precision_recall_curve   
from sklearn.metrics import accuracy_score   
from sklearn.metrics import confusion_matrix   
from sklearn.metrics import classification_report   # 数据准备  
data = np.loadtxt("./500_UCR_Anomaly_robotDOG1_10000_19280_19360.txt")   X_train = np.expand_dims(data[:10000], axis=1)   
X_test = np.expand_dims(data[10000:], axis=1)   transformer = MatrixProfileSKI()   
transformer.fit(X_train)   
prediction_labels_train = transformer.predict(X_train)   
prediction_labels = transformer.predict(X_test)   
prediction_score = transformer.predict_score(X_test)   y_true = prediction_labels_train   
y_pred = prediction_labels   print('Accuracy Score: ', accuracy_score(y_true, y_pred))   confusion_matrix(y_true, y_pred)   
print(classification_report(y_true, y_pred))

结果如下:

Accuracy Score: 0.89   
precision recall f1-score support   
0 0.90 0.98 0.94 9005   
1 0.21 0.04 0.06 995   accuracy 0.89 10000   
macro avg 0.55 0.51 0.50 10000   
weighted avg 0.83 0.89 0.85 10000

自动模型发现

TODS 还利用 TODS API 提供自动模型发现。自动模型发现的目标旨在根据验证集中的标签信息和给定的计算时间限制搜索最佳管道。

import pandas as pd   
from axolotl.backend.simple import SimpleRunner   
from tods import generate_dataset, generate_problem   
from tods.searcher import BruteForceSearch   table_path = 'yahoo_sub_5.csv'   
target_index = 6 # what column is the target   
time_limit = 30 # How many seconds you wanna search   metric = 'F1_MACRO' # F1 on label 1   # Read data and generate dataset and problem   
df = pd.read_csv(table_path)   
dataset = generate_dataset(df, target_index=target_index)   
problem_description = generate_problem(dataset, metric)   # Start backend   
backend = SimpleRunner(random_seed=0)   # Start search algorithm   
search = BruteForceSearch(problem_description=problem_description,   
backend=backend)   # Find the best pipeline   
best_runtime, best_pipeline_result = search.search_fit(input_data=[dataset], time_limit=time_limit)   
best_pipeline = best_runtime.pipeline best_output = best_pipeline_result.output   
# Evaluate the best pipeline   
best_scores = search.evaluate(best_pipeline).scores

print('Search History:')   
for pipeline_result in search.history:   print('-' * 52)   print('Pipeline id:', pipeline_result.pipeline.id)   print(pipeline_result.scores)

print('Best pipeline:')   
print('-' * 52)   
print('Pipeline id:', best_pipeline.id)   
print('Pipeline json:', best_pipeline.to_json())   
print('Output:')   
print(best_output)   
print('Scores:')   
print(best_scores)

管道搜索完成后,用户可以通过管道id访问所有搜索到的管道,并保存任何管道描述文件以供后续使用。

这篇关于TODS:一款功能强大的多元时间序列异常检测工具的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452390

相关文章

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Python中异常类型ValueError使用方法与场景

《Python中异常类型ValueError使用方法与场景》:本文主要介绍Python中的ValueError异常类型,它在处理不合适的值时抛出,并提供如何有效使用ValueError的建议,文中... 目录前言什么是 ValueError?什么时候会用到 ValueError?场景 1: 转换数据类型场景

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

Java将时间戳转换为Date对象的方法小结

《Java将时间戳转换为Date对象的方法小结》在Java编程中,处理日期和时间是一个常见需求,特别是在处理网络通信或者数据库操作时,本文主要为大家整理了Java中将时间戳转换为Date对象的方法... 目录1. 理解时间戳2. Date 类的构造函数3. 转换示例4. 处理可能的异常5. 考虑时区问题6.

Python中的异步:async 和 await以及操作中的事件循环、回调和异常

《Python中的异步:async和await以及操作中的事件循环、回调和异常》在现代编程中,异步操作在处理I/O密集型任务时,可以显著提高程序的性能和响应速度,Python提供了asyn... 目录引言什么是异步操作?python 中的异步编程基础async 和 await 关键字asyncio 模块理论

详解Python中通用工具类与异常处理

《详解Python中通用工具类与异常处理》在Python开发中,编写可重用的工具类和通用的异常处理机制是提高代码质量和开发效率的关键,本文将介绍如何将特定的异常类改写为更通用的ValidationEx... 目录1. 通用异常类:ValidationException2. 通用工具类:Utils3. 示例文

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r