使用AddressSanitizer搭配addr2line查找C/C++内存泄漏问题

本文主要是介绍使用AddressSanitizer搭配addr2line查找C/C++内存泄漏问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • AddressSanitizer
  • 检测步骤
    • 泄漏发生在可执行程序本身
    • 泄漏发生在编译所需动态库中
    • 泄漏发生在自定义加载的动态库中
      • unknown module
      • maps
      • 具体操作
  • 总结

前言

指针是C/C++程序中的利器,同时也引入了风险,现代C++中增加了智能指针来降低使用“裸”指针带来的风险,但是智能指针不是一颗银弹,它不能解决所有的指针问题,内存泄漏在C/C++程序开发中依旧是值得注意的,学会合理、合适的方法来查找内存泄漏问题也是一项有用的技能。

通常内存泄漏问题会在开发到一定程度时集中检查,一些检测方法长时间不去使用难免会忘记,所以本文记录一种自己常用的检测方法,方便日后查阅。

AddressSanitizer

AddressSanitizer 是什么东西呢?从名字上直接翻译叫“地址消毒剂”,其实就是用来检查地址问题的。

它是一款地址问题检测工具,简称 ASAN,开源项目主地址为 google/sanitizers,是众多检测工具AddressSanitizer, MemorySanitizer, ThreadSanitizer, LeakSanitizer 中的一款,功能非常强大,可以检测出栈上缓冲区溢出、堆上缓冲区溢出、引用已释放内存、内存泄漏等多种地址问题。

今天想记录的是使用 AddressSanitizer 检测内存泄漏的步骤,其实检测内存泄漏的功能目前已经被基本独立成了 LeakSanitizer,不过仍可以通过在 AddressSanitizer 工具中通过参数来开启和关闭使用。

检测步骤

其实使用 ASAN 检测内存泄漏还是比较简单的,g++4.8 以上的版本自带了 ASAN 工具,只要编译时指定好参数,编译完成后正常启动运行程序就可以了,只不过有些情况下只从检测报告中无法准确定位问题,需要借助一些工具进一步缩小检测范围。

泄漏发生在可执行程序本身

这种情况检测起来比较容易,编写如下测试代码:

//test.cpp#include <iostream>void func()
{int* p = new int(); // 内存泄漏的位置p = nullptr;
}int main()
{func();std::cout << "test leak" << std::endl;return 0;
}

使用g++进行编译,编译时添加参数 -fsanitize=leak 就可以了,启动后可以清晰的展示出内存泄漏的位置 test.cpp:5,也就是 test.cpp 文件的第5行。

albert@home-pc:/mnt/d/data/cpp/testleak$ g++ test.cpp -g -o test --std=c++11 -fsanitize=leak
albert@home-pc:/mnt/d/data/cpp/testleak$ ./test
test leak=================================================================
==344==ERROR: LeakSanitizer: detected memory leaksDirect leak of 4 byte(s) in 1 object(s) allocated from:#0 0x7fc7d796d815 in operator new(unsigned long) (/usr/lib/x86_64-linux-gnu/liblsan.so.0+0xd815)#1 0x400967 in func() /mnt/d/data/cpp/testleak/test.cpp:5#2 0x400985 in main /mnt/d/data/cpp/testleak/test.cpp:11#3 0x7fc7d722083f in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2083f)SUMMARY: LeakSanitizer: 4 byte(s) leaked in 1 allocation(s).
albert@home-pc:/mnt/d/data/cpp/testleak$

这里有个小意外,将 int* p = new int(); 这句代码改成 int* p = new int[10]; 可以检测出内存泄漏如下:

albert@home-pc:/mnt/d/data/cpp/testleak$ g++ test.cpp -fsanitize=leak -g -o test --std=c++11
albert@home-pc:/mnt/d/data/cpp/testleak$ ./test
test leak=================================================================
==416==ERROR: LeakSanitizer: detected memory leaksDirect leak of 400 byte(s) in 1 object(s) allocated from:#0 0x7fdc0c16d975 in operator new[](unsigned long) (/usr/lib/x86_64-linux-gnu/liblsan.so.0+0xd975)#1 0x400967 in func() /mnt/d/data/cpp/testleak/test.cpp:5#2 0x40097f in main /mnt/d/data/cpp/testleak/test.cpp:11#3 0x7fdc0ba2083f in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2083f)SUMMARY: LeakSanitizer: 400 byte(s) leaked in 1 allocation(s).
albert@home-pc:/mnt/d/data/cpp/testleak$

但是将 int* p = new int(); 这句代码改成 int* p = new int[1024]; 就无法检测是内存泄漏了,只能修改编译选项为 -fsanitize=address 才能检测出泄漏,目前还不知道真正的原因是什么。

albert@home-pc:/mnt/d/data/cpp/testleak$ g++ test.cpp -fsanitize=address -g -o test --std=c++11
albert@home-pc:/mnt/d/data/cpp/testleak$ ./test
test leak=================================================================
==432==ERROR: LeakSanitizer: detected memory leaksDirect leak of 4096 byte(s) in 1 object(s) allocated from:#0 0x7f1d42b296b2 in operator new[](unsigned long) (/usr/lib/x86_64-linux-gnu/libasan.so.2+0x996b2)#1 0x400b27 in func() /mnt/d/data/cpp/testleak/test.cpp:5#2 0x400b3f in main /mnt/d/data/cpp/testleak/test.cpp:11#3 0x7f1d4235083f in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2083f)SUMMARY: AddressSanitizer: 4096 byte(s) leaked in 1 allocation(s).
albert@home-pc:/mnt/d/data/cpp/testleak$

泄漏发生在编译所需动态库中

如果内存泄漏发生在编译时使用的动态库中,那么这和上一种情况基本一致,可以直接编译后运行就能发现,测试代码如下

// myadd.hint add(int a, int b);
// myadd.cpp#include "myadd.h"int add(int a, int b)
{int* p = new int(); // 内存泄漏的位置return a + b;
}
// test.cpp#include "myadd.h"
#include <iostream>int main()
{std::cout << "519 + 1 = " << add(519, 1) << std::endl;return 0;
}

添加编译选项 -fsanitize=leak 编译后运行,也可以直接显示出内存泄漏的位置,内存泄漏在 libmyadd.so 动态库中的 add 函数中。

albert@home-pc:/mnt/d/data/cpp/testleak$ g++ -shared -fPIC -o libmyadd.so myadd.cpp
albert@home-pc:/mnt/d/data/cpp/testleak$ g++ test3.cpp -L. -lmyadd -o test -Wl,-rpath=. -fsanitize=leak
albert@home-pc:/mnt/d/data/cpp/testleak$ ./test
519 + 1 = 520=================================================================
==493==ERROR: LeakSanitizer: detected memory leaksDirect leak of 4 byte(s) in 1 object(s) allocated from:#0 0x7ff1aff6d815 in operator new(unsigned long) (/usr/lib/x86_64-linux-gnu/liblsan.so.0+0xd815)#1 0x7ff1afd506b7 in add(int, int) (libmyadd.so+0x6b7)#2 0x4009cd in main (/mnt/d/data/cpp/testleak/test+0x4009cd)#3 0x7ff1af61083f in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2083f)SUMMARY: LeakSanitizer: 4 byte(s) leaked in 1 allocation(s).
albert@home-pc:/mnt/d/data/cpp/testleak$

泄漏发生在自定义加载的动态库中

这种情况要想精确定位问题就麻烦一些了,下面是用来测试的代码

// myadd.hextern "C" int add(int a, int b);
// myadd.cpp#include "myadd.h"extern "C" int add(int a, int b)
{int* p = new int(); // 内存泄漏的位置return a + b;
}
// test.cpp#include "myadd.h"
#include <dlfcn.h>
#include <iostream>typedef int (*FUNC)(int a,int b);int main() {void* handle = dlopen("./libmyadd.so", RTLD_LAZY);FUNC myadd = (FUNC)dlsym(handle,"add");int nVal = 0;std::cin >> nVal;std::cout << "519 + 1 = " << myadd(519, 1) << ", input:" << nVal << std::endl;dlclose(handle);return 0;
}

添加编译选项 -fsanitize=leak 编译后运行,输入数字618,程序运行结束,显示内存泄漏出现在 0x7fc88f0f06b7 (<unknown module>)

albert@home-pc:/mnt/d/data/cpp/testleak$ g++ -shared -fPIC -o libmyadd.so myadd.cpp -g
albert@home-pc:/mnt/d/data/cpp/testleak$ g++ test.cpp -ldl -o test -Wl,-rpath=. -g -fsanitize=leak
albert@home-pc:/mnt/d/data/cpp/testleak$ ./test
618
519 + 1 = 520, input:618=================================================================
==817==ERROR: LeakSanitizer: detected memory leaksDirect leak of 4 byte(s) in 1 object(s) allocated from:#0 0x7fc89076d815 in operator new(unsigned long) (/usr/lib/x86_64-linux-gnu/liblsan.so.0+0xd815)#1 0x7fc88f0f06b7  (<unknown module>)#2 0x400bc2 in main (/mnt/d/data/cpp/testleak/test+0x400bc2)#3 0x7fc88fe1083f in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2083f)SUMMARY: LeakSanitizer: 4 byte(s) leaked in 1 allocation(s).
albert@home-pc:/mnt/d/data/cpp/testleak$

unknown module

当使用 dlopen 的方式加载的动态库时,产生的内存泄漏常显示为 (<unknown module>),那是因为内存检测工具在程序退出时分析泄漏情况,而这时自定义加载的动态库往往已经手动调用 dlclose 关闭了,这时就会显示成 0x7fc88f0f06b7 (<unknown module>) 的显示。

maps

针对于出现 (<unknown module>) 的这种情况,可以通过查询 /proc/pid/maps 来辅助查询,maps 文件显示进程映射后的内存区域和访问权限,是程序正在运行时的信息,数据格式如下:

7f8c7adb6000-7f8c7adba000 rw-p 00000000 00:00 0
7f8c7adc0000-7f8c7af32000 r-xp 00000000 00:00 189413             /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21
7f8c7af32000-7f8c7af3f000 ---p 00172000 00:00 189413             /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21
7f8c7af3f000-7f8c7b132000 ---p 0017f000 00:00 189413             /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21
7f8c7b132000-7f8c7b13c000 r--p 00172000 00:00 189413             /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21
7f8c7b13c000-7f8c7b13e000 rw-p 0017c000 00:00 189413             /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21
7f8c7b13e000-7f8c7b142000 rw-p 00000000 00:00 0
7f8c7b150000-7f8c7b153000 r-xp 00000000 00:00 243909             /lib/x86_64-linux-gnu/libdl-2.23.so
7f8c7b153000-7f8c7b154000 ---p 00003000 00:00 243909             /lib/x86_64-linux-gnu/libdl-2.23.so
7f8c7b154000-7f8c7b352000 ---p 00004000 00:00 243909             /lib/x86_64-linux-gnu/libdl-2.23.so
7f8c7b352000-7f8c7b353000 r--p 00002000 00:00 243909             /lib/x86_64-linux-gnu/libdl-2.23.so
7f8c7b353000-7f8c7b354000 rw-p 00003000 00:00 243909             /lib/x86_64-linux-gnu/libdl-2.23.so
7f8c7b360000-7f8c7b39f000 r-xp 00000000 00:00 247365             /usr/lib/x86_64-linux-gnu/liblsan.so.0.0.0
7f8c7b39f000-7f8c7b3a2000 ---p 0003f000 00:00 247365             /usr/lib/x86_64-linux-gnu/liblsan.so.0.0.0
7f8c7b3a2000-7f8c7b59e000 ---p 00042000 00:00 247365             /usr/lib/x86_64-linux-gnu/liblsan.so.0.0.0
7f8c7b59e000-7f8c7b5a0000 r--p 0003e000 00:00 247365             /usr/lib/x86_64-linux-gnu/liblsan.so.0.0.0
7f8c7b5a0000-7f8c7b5a1000 rw-p 00040000 00:00 247365             /usr/lib/x86_64-linux-gnu/liblsan.so.0.0.0
7f8c7b5a1000-7f8c7c1f4000 rw-p 00000000 00:00 0
7f8c7c200000-7f8c7c225000 r-xp 00000000 00:00 243945             /lib/x86_64-linux-gnu/ld-2.23.so
7f8c7c225000-7f8c7c226000 r-xp 00025000 00:00 243945             /lib/x86_64-linux-gnu/ld-2.23.so
  • 第一列:7f8c7b360000-7f8c7b39f000,表示本段内存映射的虚拟地址空间范围。
  • 第二列:r-xp,表示此段虚拟地址空间的属性。r表示可读,w表示可写,x表示可执行,ps共用一个字段,互斥关系,p表示私有段,s表示共享段,-表示没有权限。
  • 第三列:00000000,表示映射偏移。对有名映射,表示此段虚拟内存起始地址在文件中以页为单位的偏移。对匿名映射,它等于0或者vm_start/PAGE_SIZE。
  • 第四列:00:00,表示映射文件所属设备号。对有名映射来说,是映射的文件所在设备的设备号,对匿名映射来说,因为没有文件在磁盘上,所以没有设备号,始终为00:00。
  • 第五列:247365,表示映射文件所属节点号。对有名映射来说,是映射的文件的节点号。对匿名映射来说,因为没有文件在磁盘上,所以没有节点号,始终为0。
    第六列:/usr/lib/x86_64-linux-gnu/liblsan.so.0.0.0,表示映射文件名或堆、栈。对匿名映射来说,是此段虚拟内存在进程中的角色。[stack]表示在进程中作为栈使用,[heap]表示堆。对有名来说,是映射的文件名。其余情况则无显示。

7f8c7b360000-7f8c7b39f000 r-xp 00000000 00:00 247365 /usr/lib/x86_64-linux-gnu/liblsan.so.0.0.0

这一行就展示了 liblsan.so 这个动态库映射的内存中位置和权限情况,liblsan.so 也就是 ASAN 工具用来检测内存泄漏的工具所依赖的动态库。

具体操作

  1. 启动一个终端,然后运行 test 程序,因为程序中要求从控制台读取一个变量,所以运行后程序会一直停留在控制台等待输入
albert@home-pc:/mnt/d/data/cpp/testleak$ ./test
  1. 重新打开一个终端,查询 test 程序的进程id,然后拷贝对应的 maps 文件
albert@home-pc:/mnt/d/data/cpp/testleak$ ps -ef | grep test
albert     986   889  0 21:42 pts/0    00:00:00 ./test
albert     988   953  0 21:42 pts/1    00:00:00 grep --color=auto test
albert@home-pc:/mnt/d/data/cpp/testleak$ cp /proc/986/maps testmaps
  1. 在第一个终端中输入数字,程序运行结束,显示出内存泄漏信息
albert@home-pc:/mnt/d/data/cpp/testleak$ ./test# 以下为新的信息,输入了515515
519 + 1 = 520, input:515=================================================================
==986==ERROR: LeakSanitizer: detected memory leaksDirect leak of 4 byte(s) in 1 object(s) allocated from:#0 0x7f8c7b36d815 in operator new(unsigned long) (/usr/lib/x86_64-linux-gnu/liblsan.so.0+0xd815)#1 0x7f8c79cf06b7  (<unknown module>)#2 0x400bc2 in main (/mnt/d/data/cpp/testleak/test+0x400bc2)#3 0x7f8c7aa1083f in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2083f)SUMMARY: LeakSanitizer: 4 byte(s) leaked in 1 allocation(s).
albert@home-pc:/mnt/d/data/cpp/testleak$
  1. 从检测报告中看到 0x7f8c79cf06b7 (<unknown module>),在备份的 testmaps 文件中查找范围,发现处于下面一段之中
640000000000-640000003000 rw-p 00000000 00:00 0
7f8c79cf0000-7f8c79cf1000 r-xp 00000000 00:00 282                /mnt/d/data/cpp/testleak/libmyadd.so
7f8c79cf1000-7f8c79cf2000 ---p 00001000 00:00 282                /mnt/d/data/cpp/testleak/libmyadd.so
7f8c79cf2000-7f8c79ef0000 ---p 00002000 00:00 282                /mnt/d/data/cpp/testleak/libmyadd.so
7f8c79ef0000-7f8c79ef1000 r--p 00000000 00:00 282                /mnt/d/data/cpp/testleak/libmyadd.so
7f8c79ef1000-7f8c79ef2000 rw-p 00001000 00:00 282                /mnt/d/data/cpp/testleak/libmyadd.so
7f8c79f00000-7f8c7a000000 rw-p 00000000 00:00 0
  1. 至此发现问题出现在 libmyadd.so 这个动态库中,再用 0x7f8c79cf06b7 减去动态链接库基地址 7f8c79cf0000,得到偏移量为 0x6b7,此时使用 addr2line 工具进行转化。
albert@home-pc:/mnt/d/data/cpp/testleak$ addr2line  -C -f -e /mnt/d/data/cpp/testleak/libmyadd.so 0x6b7
add
/mnt/d/data/cpp/testleak/myadd.cpp:4
  1. 至此就找到了内存泄漏的确切位置,在/mnt/d/data/cpp/testleak/myadd.cpp文件第4行的 add 函数之中。

总结

  • 在 C++11 之后尽可能使用智能指针来管理在堆上申请的内存,shared_ptrweak_ptrunique_ptr 能帮我们减少许多麻烦
  • 想要检测程序内存用用问题, AddressSanitizer 是一个不错的选择,其中有关内存泄漏的检测已经被整合到 LeakSanitizer 工具中
  • 当程序中的内存泄漏发生在 dlopen 加载的动态库中时,常常出现 (<unknown module>) 的情况,这时需要借助 proc/pid/maps 文件和 addr2line 工具来完成精确定位。

==>> 反爬链接,请勿点击,原地爆炸,概不负责!<<==

祝融落地。一百年了,还没有什么事情是做不到的,我们需要的是时间,我等着看你们在真正的力量面前瑟瑟发抖~

这篇关于使用AddressSanitizer搭配addr2line查找C/C++内存泄漏问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451441

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL中查找重复值的实现

《MySQL中查找重复值的实现》查找重复值是一项常见需求,比如在数据清理、数据分析、数据质量检查等场景下,我们常常需要找出表中某列或多列的重复值,具有一定的参考价值,感兴趣的可以了解一下... 目录技术背景实现步骤方法一:使用GROUP BY和HAVING子句方法二:仅返回重复值方法三:返回完整记录方法四:

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.