Windows利用MMDeploy部署OpenMMLab 模型并使用Python进行部署

2023-12-03 20:04

本文主要是介绍Windows利用MMDeploy部署OpenMMLab 模型并使用Python进行部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、准备工作

二、安装 MMDeploy

总结


前言

近期在用OpenMMLab构建模型,然后需要使用MMDeploy对模型进行部署。虽然官方文档提供了详细的说明,但是写的太繁琐了,而且在实际部署过程中,发现并不是所有步骤和内容都需要,因此,自己通过测试,记录一下如何利用MMDeploy部署OpenMMLab 模型。


一、准备工作

在利用MMDeploy部署模型之前,需要安装好CUDA、CUDNN。对于端到端的模型转换和推理,MMDeploy 依赖 Python 3.6+ 以及 PyTorch 1.8+。

第一步:从官网下载并安装 Miniconda

第二步:创建并激活 conda 环境

conda create --name mmdeploy python=3.8 -y
conda activate mmdeploy

第三步: 参考官方文档并安装 PyTorch。本文主要是在GPU下测试,因此,安装脚本为:

pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118

二、安装 MMDeploy

第一步:通过 MIM 安装 MMCV

pip install -U openmim
mim install "mmcv>=2.0.0rc2"

第二步: 安装 MMDeploy 和 推理引擎

主要执行以下命令:

# 1. 安装 MMDeploy 模型转换工具(含trt/ort自定义算子)
pip install mmdeploy==1.3.0
# 2. 支持 onnxruntime-gpu tensorrt 推理
pip install mmdeploy-runtime-gpu==1.3.0
# 3. onnxruntime-gpu
pip install onnxruntime-gpu==1.8.1

第三步: 准备mmdeploy和mmpretrain

1.克隆mmdeploy仓库

git clone -b main https://github.com/open-mmlab/mmdeploy.git

这里主要为了使用configs文件,所以没有加--recursive来下载submodule,也不需要编译mmdeploy

2.安装mmpretrain

git clone -b main https://github.com/open-mmlab/mmpretrain.git
cd mmpretrain
pip install -e .

3.准备一个PyTorch的模型文件当作我们的示例

这里选择了resnet18_8xb32_in1k_20210831-fbbb1da6.pth,对应的训练config为resnet18_8xb32_in1k.py

此时,文件夹目录为:

4.在构建python 转换代码时,官方给出的代码会出现无法找到deploy_cfg文件的问题,所以我这里使用了绝对目录,只需要将absolute_path修改为自己得文件路径即可。

from mmdeploy.apis import torch2onnx
from mmdeploy.backend.sdk.export_info import export2SDKabsolute_path = "自己电脑上的路径"img = absolute_path + "mmpretrain/demo/demo.JPEG"
work_dir = absolute_path + "work_dir/onnx/resnet"
save_file = absolute_path + "end2end.onnx"
deploy_cfg = absolute_path + "mmdeploy/configs/mmpretrain/classification_onnxruntime_dynamic.py"
model_cfg = absolute_path + "mmpretrain/configs/resnet/resnet18_8xb32_in1k.py"
model_checkpoint = absolute_path + "resnet18_8xb32_in1k_20210831-fbbb1da6.pth"
device = "cpu"# 1. Convert model to ONNX
torch2onnx(img, work_dir=work_dir, save_file=save_file,deploy_cfg=deploy_cfg, model_cfg=model_cfg,device=device, model_checkpoint=model_checkpoint)# 2. Extract pipeline info for sdk use (dump-info)
export2SDK(deploy_cfg=deploy_cfg, model_cfg=model_cfg, work_dir=work_dir, device=device, pth=model_checkpoint)

5.推理代码如下。

# Copyright (c) OpenMMLab. All rights reserved.
import argparseimport cv2
from mmdeploy_runtime import Classifierabsolute_path = "自己电脑上的路径"
model_path = absolute_path + 'work_dir/onnx/resnet/'
img_path = absolute_path + "mmpretrain/demo/bird.JPEG"def parse_args():parser = argparse.ArgumentParser(description='show how to use sdk python api')parser.add_argument('--device_name', default="cpu", help='name of device, cuda or cpu')parser.add_argument('--model_path', default=model_path, help='path of mmdeploy SDK model dumped by model converter')parser.add_argument('--image_path', default=img_path, help='path of an image')args = parser.parse_args()return argsdef main():args = parse_args()img = cv2.imread(args.image_path)classifier = Classifier(model_path=args.model_path, device_name=args.device_name, device_id=0)result = classifier(img)for label_id, score in result:print(label_id, score)if __name__ == '__main__':main()

总结

通过对官方文档的测试,发现也不是所有的内容都需要的。尤其是当仅仅使用python进行推理的情况下,是不需要下载mmdeploy-1.3.0-windows-amd64.zipmmdeploy-1.3.0-windows-amd64-cuda11.8.zip的。

这篇关于Windows利用MMDeploy部署OpenMMLab 模型并使用Python进行部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/450705

相关文章

Spring中@Lazy注解的使用技巧与实例解析

《Spring中@Lazy注解的使用技巧与实例解析》@Lazy注解在Spring框架中用于延迟Bean的初始化,优化应用启动性能,它不仅适用于@Bean和@Component,还可以用于注入点,通过将... 目录一、@Lazy注解的作用(一)延迟Bean的初始化(二)与@Autowired结合使用二、实例解

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

Java中有什么工具可以进行代码反编译详解

《Java中有什么工具可以进行代码反编译详解》:本文主要介绍Java中有什么工具可以进行代码反编译的相关资,料,包括JD-GUI、CFR、Procyon、Fernflower、Javap、Byte... 目录1.JD-GUI2.CFR3.Procyon Decompiler4.Fernflower5.Jav

Spring Boot 中正确地在异步线程中使用 HttpServletRequest的方法

《SpringBoot中正确地在异步线程中使用HttpServletRequest的方法》文章讨论了在SpringBoot中如何在异步线程中正确使用HttpServletRequest的问题,... 目录前言一、问题的来源:为什么异步线程中无法访问 HttpServletRequest?1. 请求上下文与线

在 Spring Boot 中使用异步线程时的 HttpServletRequest 复用问题记录

《在SpringBoot中使用异步线程时的HttpServletRequest复用问题记录》文章讨论了在SpringBoot中使用异步线程时,由于HttpServletRequest复用导致... 目录一、问题描述:异步线程操作导致请求复用时 Cookie 解析失败1. 场景背景2. 问题根源二、问题详细分

从零教你安装pytorch并在pycharm中使用

《从零教你安装pytorch并在pycharm中使用》本文详细介绍了如何使用Anaconda包管理工具创建虚拟环境,并安装CUDA加速平台和PyTorch库,同时在PyCharm中配置和使用PyTor... 目录背景介绍安装Anaconda安装CUDA安装pytorch报错解决——fbgemm.dll连接p

SpringBoot快速接入OpenAI大模型的方法(JDK8)

《SpringBoot快速接入OpenAI大模型的方法(JDK8)》本文介绍了如何使用AI4J快速接入OpenAI大模型,并展示了如何实现流式与非流式的输出,以及对函数调用的使用,AI4J支持JDK8... 目录使用AI4J快速接入OpenAI大模型介绍AI4J-github快速使用创建SpringBoot

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO