第一类瑞利索末菲标量衍射模型的方孔衍射的空间像计算(附python计算代码)

本文主要是介绍第一类瑞利索末菲标量衍射模型的方孔衍射的空间像计算(附python计算代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

记第一类瑞利索末菲标量衍射模型的方孔衍射的空间像计算(附python计算代码)

  • RS type 1 衍射空间像计算
    • 傅里叶变换
    • 采样条件
  • 实际计算
    • 计算要求
    • 傅立叶变换法计算
    • 直接卷积方法计算
    • 代码
      • 傅立叶变换方法
      • 直接卷积

https://zhuanlan.zhihu.com/p/624292239
Goodman, J. W. (2004). Introduction to Fourier Optics.

RS type 1 衍射空间像计算

U 1 ( P 0 ) = 1 j λ ∫ ∫ Σ U ( P 1 ) e x p ( j k r 01 ) r 01 cos ⁡ ( n ⃗ , r 01 ⃗ ) d s U_1(P_0)=\frac{1}{j\lambda}\int\int_\Sigma U(P_1)\frac{exp(jkr_{01})}{r_{01}}\cos (\vec{n},\vec{r_{01}})ds U1(P0)=1ΣU(P1)r01exp(jkr01)cos(n ,r01 )ds

直接计算该积分,需要二重循环,然后再二重循环遍历观测屏上的点,效率低下

傅里叶变换

二重积分在 Σ \Sigma Σ上进行计算。将ds写为dxdy的形式,z为观测平面与源平面的距离,有
cos ⁡ ( n ⃗ , r 01 ⃗ ) = z r 01 \cos(\vec{n},\vec{r_{01}}) = \frac{z}{r_{01}} cos(n ,r01 )=r01z
r 01 = ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 r_{01} = \sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2} r01=(xx0)2+(yy0)2+(zz0)2
在这里插入图片描述

U 1 ( P 0 ) = 1 j λ ∫ ∫ Σ U ( x , y ) e x p ( j k r 01 ) r 01 cos ⁡ ( n ⃗ , r 01 ⃗ ) d x d y = ∫ ∫ Σ U ( x , y ) V ( x , y ) d x d y \begin{align} U_1(P_0) &=\frac{1}{j\lambda}\int\int_\Sigma U(x,y)\frac{exp(jkr_{01})}{r_{01}}\cos (\vec{n},\vec{r_{01}})dxdy \nonumber \\ &=\int\int_\Sigma U(x,y)V(x,y)dxdy \end{align} U1(P0)=1ΣU(x,y)r01exp(jkr01)cos(n ,r01 )dxdy=ΣU(x,y)V(x,y)dxdy

V ( x , y ) = 1 j λ e x p ( j k ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 ) ( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 z ( x − x 0 ) 2 + ( y − y 0

这篇关于第一类瑞利索末菲标量衍射模型的方孔衍射的空间像计算(附python计算代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/450090

相关文章

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

基于Python打造一个全能文本处理工具

《基于Python打造一个全能文本处理工具》:本文主要介绍一个基于Python+Tkinter开发的全功能本地化文本处理工具,它不仅具备基础的格式转换功能,更集成了中文特色处理等实用功能,有需要的... 目录1. 概述:当文本处理遇上python图形界面2. 功能全景图:六大核心模块解析3.运行效果4. 相

Python中的魔术方法__new__详解

《Python中的魔术方法__new__详解》:本文主要介绍Python中的魔术方法__new__的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、核心意义与机制1.1 构造过程原理1.2 与 __init__ 对比二、核心功能解析2.1 核心能力2.2

Python虚拟环境终极(含PyCharm的使用教程)

《Python虚拟环境终极(含PyCharm的使用教程)》:本文主要介绍Python虚拟环境终极(含PyCharm的使用教程),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录一、为什么需要虚拟环境?二、虚拟环境创建方式对比三、命令行创建虚拟环境(venv)3.1 基础命令3

Python Transformer 库安装配置及使用方法

《PythonTransformer库安装配置及使用方法》HuggingFaceTransformers是自然语言处理(NLP)领域最流行的开源库之一,支持基于Transformer架构的预训练模... 目录python 中的 Transformer 库及使用方法一、库的概述二、安装与配置三、基础使用:Pi

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Python中使用正则表达式精准匹配IP地址的案例

《Python中使用正则表达式精准匹配IP地址的案例》Python的正则表达式(re模块)是完成这个任务的利器,但你知道怎么写才能准确匹配各种合法的IP地址吗,今天我们就来详细探讨这个问题,感兴趣的朋... 目录为什么需要IP正则表达式?IP地址的基本结构基础正则表达式写法精确匹配0-255的数字验证IP地

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim