RuntimeError: CUDA error: device-side assert triggeredCUDA kernel errors might be asynchronously re

本文主要是介绍RuntimeError: CUDA error: device-side assert triggeredCUDA kernel errors might be asynchronously re,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.

关于Ubuntu18.04运行yolov5时出现这个错误的解决方法:

   它显示的问题是cuda内核出现了错误,那么就是与cuda版本有关

我所运行的电脑配置为 RTX3060 + ubuntu18.04 + 10.2 CUDA 以及所对应的cudnn

后来我查阅的大多数文章显示我的3060显卡算力为8.6

官方网站:https://developer.nvidia.com/cuda-gpus

 于是我下载了cuda 11.1 和对应的cudnn v8.0.5

 

 下载anaconda3

推荐博主

(12条消息) linux上下载Anaconda3_西海燃风的博客-CSDN博客_anaconda linux 下载

pytorch

在pytorch里我选择cuda11.1

# CUDA 11.1
pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

下载搭配好后测试

python
import torch
print(torch.cuda.is_available()) #正确会显示true

print(torch.version.cuda)  #显示版本

然后问题解决!

这篇关于RuntimeError: CUDA error: device-side assert triggeredCUDA kernel errors might be asynchronously re的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/446588

相关文章

Linux_kernel驱动开发11

一、改回nfs方式挂载根文件系统         在产品将要上线之前,需要制作不同类型格式的根文件系统         在产品研发阶段,我们还是需要使用nfs的方式挂载根文件系统         优点:可以直接在上位机中修改文件系统内容,延长EMMC的寿命         【1】重启上位机nfs服务         sudo service nfs-kernel-server resta

笔记整理—内核!启动!—kernel部分(2)从汇编阶段到start_kernel

kernel起始与ENTRY(stext),和uboot一样,都是从汇编阶段开始的,因为对于kernel而言,还没进行栈的维护,所以无法使用c语言。_HEAD定义了后面代码属于段名为.head .text的段。         内核起始部分代码被解压代码调用,前面关于uboot的文章中有提到过(eg:zImage)。uboot启动是无条件的,只要代码的位置对,上电就工作,kern

欧拉系统 kernel 升级、降级

系统版本  cat  /etc/os-release  NAME="openEuler"VERSION="22.03 (LTS-SP1)"ID="openEuler"VERSION_ID="22.03"PRETTY_NAME="openEuler 22.03 (LTS-SP1)"ANSI_COLOR="0;31" 系统初始 kernel 版本 5.10.0-136.12.0.

编译linux内核出现 arm-eabi-gcc: error: : No such file or directory

external/e2fsprogs/lib/ext2fs/tdb.c:673:29: warning: comparison between : In function 'max2165_set_params': -。。。。。。。。。。。。。。。。。。 。。。。。。。。。。。。。 。。。。。。。。 host asm: libdvm <= dalvik/vm/mterp/out/Inte

Usb Audio Device Descriptor(10) Hid Device

对于 Standard Interface Descriptor, 当 bInterfaceClass=0x03时,即为HID设备。Standard Interface Descriptor如下 struct usb_standard_interface_descriptor{U8 bLength; /*Size of this descriptor in bytes*/U8 bDescrip

[Linux Kernel Block Layer第一篇] block layer架构设计

目录 1. single queue架构 2. multi-queue架构(blk-mq)  3. 问题 随着SSD快速存储设备的发展,内核社区越发发现,存储的性能瓶颈从硬件存储设备转移到了内核block layer,主要因为当时的内核block layer是single hw queue的架构,导致cpu锁竞争问题严重,本文先提纲挈领的介绍内核block layer的架构演进,然

收藏:解决 pip install 出现 error: subprocess-exited-with-error 错误的方法

在使用 pip 安装 Python 包时,有时候会遇到 error: subprocess-exited-with-error 错误。这种错误通常是由于 setuptools 版本问题引起的。本文将介绍如何解决这一问题 当你使用 pip install 安装某个 Python 包时,如果 setuptools 版本过高或过低,可能会导致安装过程出错,并出现类似以下错误信息:error: subpr

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 (debug笔记)

Nn criterions don’t compute the gradient w.r.t. targets error「pytorch」 ##一、 缘由及解决方法 把这个pytorch-ddpg|github搬到jupyter notebook上运行时,出现错误Nn criterions don’t compute the gradient w.r.t. targets error。注:我用

PyInstaller问题解决 onnxruntime-gpu 使用GPU和CUDA加速模型推理

前言 在模型推理时,需要使用GPU加速,相关的CUDA和CUDNN安装好后,通过onnxruntime-gpu实现。 直接运行python程序是正常使用GPU的,如果使用PyInstaller将.py文件打包为.exe,发现只能使用CPU推理了。 本文分析这个问题和提供解决方案,供大家参考。 问题分析——找不到ONNX Runtime GPU 动态库 首先直接运行python程序

C/C++ 中的assert()宏 断言机制

ASSERT()是一个调试程序时经常使用的宏,在程序运行时它计算括号内的表达式,如果表达式为FALSE (0), 程序将报告错误,并终止执行。如果表达式不为0,则继续执行后面的语句。这个宏通常原来判断程序中是否出现了明显非法的数据,如果出现了终止程序以免导致严重后果,同时也便于查找错误。   原型定义: #include <assert.h> void assert( int expre