[UFLDL-1] 监督学习和优化

2023-12-02 18:08
文章标签 学习 优化 监督 ufldl

本文主要是介绍[UFLDL-1] 监督学习和优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 线性回归
    • 问题简介 
    • 函数最小化
  • 逻辑回归

线性回归

问题简介 

http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/

作为一个回顾,我们将学习怎样实现线性回归。主要的目的是学习目标函数,计算它们的梯度并且在参数集上优化。这些基本的工具之后将成为更加复杂算法的基础。读者希望了解更多细节可以参考讲义上面的监督学习。

在线性回归中我们的目标是从输入向量 xRn 中预测目标值 y 。举个例子,我们可能对房子价格做预测,y 就代表房子的价格。 x 中的元素xj代表房子的特征(比如他的大小和卧室的数码)。假定我们有很多房子的样例,第i个房子的特征表示为 x(i) ,它的价格是 y(i) 。为了简便,我们的目标是为了找到一个函数 y=h(x) ,所以对于每一个训练样例我们有 y(i)h(x(i)) .如果我们成果找到了 h(x) 这样的函数,同时我们看到了足够多的房子和它们的价格。我们希望这样的函数 h(x) 对于一个新给定的不知道价格的房子的特征,也能对房子的价格有好的预测。

为了找到使得 y(i)h(x(i)) 的函数 h(x) 我们必须决定如何表达函数 h(x) .要开始了,我们使用线性函数 hθ(x)=jθjxj=θx .这里 hθ(x) 表示由 θ 参数化的一个很大的簇函数 (我们把这个函数空间称为“假设类”).通过这样的 h 的表示,我们的任务是找到一个θ使得 hθ(xi) 尽可能的靠近 y(i) .特别的,我们搜索 θ 来最小化 J(θ) :

J(θ)=12i(hθ(x(i))y(i))2=12i(θx(i)y(i))2

这个函数是损失函数,我们的问题是度量一个选定的 θ 在预测 y(i) 时导致了多少的误差。这也称为损失,惩罚或者目标函数。

函数最小化

我们现在希望找到一个 θ 使得给定的 J(θ) 最小化。有许多的优化算法来最小化这个函数。我们介绍一些非常有效而且容易自己实现的梯度下降算法。现在,让我理所当然的接受这个事实大多数使用的最小化函数算法都需要我们提供2部分的信息:我们需要用代码计算 J(θ) θJ(θ) .在这之后我们剩下的优化处理就是找到最好的 θ 来处理我们的优化算法(把梯度看作不同的目标函数,在梯度方向上增长最快,所以很容易明白优化算法怎样使用较小的 θ 来减少(或者增加) J(θ) )。

上的 J(θ) 在给定训练集后很容易在matlab上实现。需要计算的梯度是:

θJ(θ)=J(θ)θ1J(θ)θ2J(θ)θn

微分函数表示如下:

J(θ)θj=ix(i)j(hθ(x(i))y(i))

逻辑回归

http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/

前面我们学习了如何通过输入值的线性函数(比如,房子的大小)来预测连续的数值(比如,房子价格)。有些时候我们希望预测离散的变量例如预测一个灰度值表示的是数字0或者1.这是一个分类问题。逻辑回归是学习做这样决策的简单分类算法。

在线性回归中我们试图使用线性函数 y=hθ(x)=θT(x) 预测第i个样例 x(x) 输出值 y(i) 。这很明显对于一个二分类预测不是一个好的解决方案。在逻辑回归中,我们使用不同的假设类,我们试图预测一个样例属于属于1的概率与属于0的概率。特别的,我们试图学习下面的函数:

P(y=1|x)P(y=0|x)=hθ(x)=11+exp(θx)σ(θx),=1P(y=1|x)=1hθ(x).

函数 σ(z)11+exp(z) 经常被称为sigmoid或者logistic函数。它是一个S型的函数,压缩 θTx 的值到[0,1],所以我们把 hθ(x) 看作一个概率。我们的目标是搜索一个 θ 值使得x属于类别1的概率 P(y=1|x)=hθ(x) 大于x属于类别0的概率。对于二分类的训练集我们有下面的损失函数:

J(θ)=i(y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i))))

需要注意的是上面求和的部分只有1个不为0(这取决于标签是否为0)。 当 yi=1 最小化损失函数等价于最大化 hθ(xi) ,当 yi=0 时我们使得 1hθ 最大 。全面的逻辑回归解释以及损失函数的推导,在CS229监督学习笔记里面。

我们现在有了一个损失函数来度量一个假设到底拟合训练数据到怎样程度。我们可以找到使得 J(θ) 最小的最好的一个 θ 来分类训练数据。一但找到了这样的函数,我们能够对一个新的数据进行分类(0、1):如果 P(y=1|x)>P(y=0|x) 分为类别1,否则类别0.这也等同于检查是否 hθ(x)>0.5

为了最小化 J(θ) 我们使用和线性回归相同的工具。我们需要计算 J(θ) θJ(θ)

J(θ)θj=ix(i)j(hθ(x(i))y(i)).

向量表示形式:

θJ(θ)=ix(i)(hθ(x(i))y(i))

这篇关于[UFLDL-1] 监督学习和优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/446297

相关文章

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、