2023第十二届“认证杯”数学中国数学建模国际赛赛题A完整解析

本文主要是介绍2023第十二届“认证杯”数学中国数学建模国际赛赛题A完整解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A题完整题解

  • 写在前面
    • 假设
      • 数据预处理
    • 问题一
    • 1 基于自适应ARIMA-BP神经网络模型的影响因素预测
      • 1.1 ARIMA模型的建立
      • 1.2 BP神经网络模型的建立
      • 1.3 基于GABP神经网络的预测模型构建
      • 1.4 自适应混合ARIMA-BP神经网络模型的建立
      • 1.5 模型求解
    • 代码
      • Q1_1.m
      • Q1_2.m
  • 完整代码与论文获取

写在前面

发布赛题一直到现在,总算完成了认证杯A题完整的解题过程,包括代码完整代码与结果、解题思路、模型文档与论文框架~

学姐的代码和论文框架保证原创,保证高质量哦,都是跟国奖学长一起努力完成的!!

假设

数据预处理

磁场数据中包含缺失值,故需对缺失值进行插补。在本文中,利用拟合模型对缺失值的进行插补。基于拟合的插补方法的一般步骤如下:
1、收集已有数据:首先,需要收集包含缺失数据的数据集。确保数据集中有足够的样本和特征来进行非线性拟合。
2、建立模型:选择适当的模型来拟合已有数据。常见的非线性模型包括多项式回归、指数函数、对数函数、幂函数等。根据数据的特点和领域知识,选择合适的模型。
3、拟合已有数据:使用已有数据来拟合选定的非线性模型。可以使用回归分析等方法来估计模型的参数。
4、预测缺失数据:使用拟合好的非线性模型来预测缺失数据的值。将已有数据中的特征值代入模型,得到对应的预测值。
在这里插入图片描述

其次,题目中要求以月份为单位对数值进行统计,而原始数据集的统计单位时日。故对日期进行转换,得到以月为单位的序列图如下所示:
在这里插入图片描述

问题一

1 基于自适应ARIMA-BP神经网络模型的影响因素预测

在本章中,基于自适应ARIMA-BP神经网络模型对数据进行预测。

1.1 ARIMA模型的建立

在这里插入图片描述

1.2 BP神经网络模型的建立

BP神经网络是是一种多层前馈算法,由输入层、隐含层和输出层组成。层与层之间有工作信号与误差信号传播。如下图所示为神经网络结构图。
在这里插入图片描述
BP神经网络的运算原理如下:
在这里插入图片描述

1.3 基于GABP神经网络的预测模型构建

(这里写一段话,描述一下问题的复杂度,引出为什么要在BP的基础上设计GABP
本文采用遗传算法对BP神经网络的进行了优化,并在迭代过程中利用BP神经网络的前向传播过程来计算每个个体的适应度,以此来提升算法的优化效率。算法的设计框架如算法如下所示。
在这里插入图片描述

在遗传算法的编码环节,IGABP将神经网络的权重和阈值连续地表示为一个向量,用于构成个体基因的表达。由于在算法运行过程中网络的结构已经确定,所需确定的权重及阈值数量也已经被确定,故在迭代过程中染色体的长度保持不变。
在遗传算法中计算个体适应度的部分,相比GABP使用解码后的个体初始化神经网络,然后根据训练后的输出计算适应度,IGABP从原理上着手,利用神经网络前向传播的过程,直接计算个体的适应度,免去了训练所需的计算量,提高了算法的优化效率。
编码及解码
假设BAGP中所使用的神经网络如下图所示:
在这里插入图片描述

则在确定网络的权重和阈值时,可以设计编码结构为:
在这里插入图片描述

在本文所设计的染色体中,基因位依次分别表述:输入层与隐含层之间的权值、隐含层的阈值、隐含层与输出层之间的权值,输出层的权值。由此,即可确定一个神经网络完整的结构。

在本文所设计的染色体中,基因位依次分别表述:输入层与隐含层之间的权值、隐含层的阈值、隐含层与输出层之间的权值,输出层的权值。由此,即可确定一个神经网络完整的结构。

1.4 自适应混合ARIMA-BP神经网络模型的建立

对于每一预测算法,均通过部分序列作为测试集。本文所设计的混合算法的混合思想主要为:在往期的预测中性能越好则在未来的预测中的权重就越高,对预测值的贡献度就越高。
在这里插入图片描述

式中,为算法k在混合算法中的权重。在每次计算混合预测值时,需要将ARIMA算法与BP神经网络算法的预测值结合起来。其计算公式可以表述为:
在这里插入图片描述

1.5 模型求解

模型求解结果如下:

在这里插入图片描述
(分析一下预测结果,识别出了波动。。。。)
在这里插入图片描述
结合黑子数进行分析,解得下一个太阳周期的开始时间约为2031年,结束时间约为2042年。

代码

Q1_1.m

clc
clear
data=xlsread('磁场.xlsx');
for i=1:size(data,1)if isnan(data(i,3)) if isnan(data(i-1,3))data(i,3)=data(i+1,3);elseif isnan(data(i+1,3))data(i,3)=data(i-1,3);elsedata(i,3)=round((data(i-1,3)+data(i+1,3))/2);endend
endcolor=[250/255,127/255,111/255;130/255,176/255,210/255;190/255,184/255,220/255;231/255,218/255,210/255;153/255,153/255,153/255];
plot([1:1:size(data,1)],data(:,3),'color',color(1,:))
set(gcf,'Color',[1 1 1])
xlabel({'Time'},'Color','k','FontSize',20,'FontName','Times New Roman')
ylabel({'magnetic field'},'Color','k','FontSize',20,'FontName','Times New Roman')

Q1_2.m

clc
clear
data=xlsread('磁场.xlsx');
index=[];
M=Inf;
for i=1:size(data,1)if data(i,2)~=Mindex=[index;i]; M=data(i,2);end
end
index=[index;size(data,1)+1];
new_data=[];
for i=1:size(index,1)-1temp_data=data(index(i):index(i+1)-1,:); new_data(i,1:2)=temp_data(1,1:2);new_data(i,3)=mean(temp_data(:,3));
endcolor=[250/255,127/255,111/255;130/255,176/255,210/255;190/255,184/255,220/255;231/255,218/255,210/255;153/255,153/255,153/255];
plot([1:1:size(new_data,1)],new_data(:,3),'color',color(1,:))
set(gcf,'Color',[1 1 1])
xlabel({'Time'},'Color','k','FontSize',20,'FontName','Times New Roman')
ylabel({'magnetic field'},'Color','k','FontSize',20,'FontName','Times New Roman')

完整代码与论文获取

目前只分享第一问哦,以下是我们的论文框架、技术模板,代码以及使用到的数据。有需要的小伙伴看下面哦

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于2023第十二届“认证杯”数学中国数学建模国际赛赛题A完整解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445066

相关文章

springboot security使用jwt认证方式

《springbootsecurity使用jwt认证方式》:本文主要介绍springbootsecurity使用jwt认证方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录前言代码示例依赖定义mapper定义用户信息的实体beansecurity相关的类提供登录接口测试提供一

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

SpringSecurity 认证、注销、权限控制功能(注销、记住密码、自定义登入页)

《SpringSecurity认证、注销、权限控制功能(注销、记住密码、自定义登入页)》SpringSecurity是一个强大的Java框架,用于保护应用程序的安全性,它提供了一套全面的安全解决方案... 目录简介认识Spring Security“认证”(Authentication)“授权” (Auth

利用Python和C++解析gltf文件的示例详解

《利用Python和C++解析gltf文件的示例详解》gltf,全称是GLTransmissionFormat,是一种开放的3D文件格式,Python和C++是两个非常强大的工具,下面我们就来看看如何... 目录什么是gltf文件选择语言的原因安装必要的库解析gltf文件的步骤1. 读取gltf文件2. 提

Java中的runnable 和 callable 区别解析

《Java中的runnable和callable区别解析》Runnable接口用于定义不需要返回结果的任务,而Callable接口可以返回结果并抛出异常,通常与Future结合使用,Runnab... 目录1. Runnable接口1.1 Runnable的定义1.2 Runnable的特点1.3 使用Ru

使用EasyExcel实现简单的Excel表格解析操作

《使用EasyExcel实现简单的Excel表格解析操作》:本文主要介绍如何使用EasyExcel完成简单的表格解析操作,同时实现了大量数据情况下数据的分次批量入库,并记录每条数据入库的状态,感兴... 目录前言固定模板及表数据格式的解析实现Excel模板内容对应的实体类实现AnalysisEventLis