【论文记录】Advances and Open Problems in Federated Learning

2023-12-02 10:50

本文主要是介绍【论文记录】Advances and Open Problems in Federated Learning,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

他人总结:[link] \, [link]


  • 讨论最优化算法的部分没看懂

4.1 \, Actors, Threat Models, and Privacy in Depth

Various threat models for different adversarial actors (malicious / honest-but-curious) :
在这里插入图片描述

4.2 \, Tools and Technologies

Various technologies along with their characteristics :
在这里插入图片描述

  • Secure multi-party computation
  • Trusted execution environments

While secure multi-party computation and trusted execution environments offer general solutions to the problem of privately computing any function on distributed private data, many optimizations are possible when focusing on specific functionalities. (e.g. Secure aggregation, Secure shuffling, Private information retrieval)

  • Differential privacy
    \quad 在FL中考虑的DP,与传统的DP有一个区别是:相邻数据集的定义不同。FL中的要求更强 :In the context of FL, D and D’ correspond to decentralized datasets that are adjacent if D’ can be obtained from D by adding or subtracting all the records of a single client (user).
    \quad 传统的差分隐私需要(假设)有一个可信的第三方。FL中应用DP则需要减少对trusted data curator的需求或依赖,具体方法有:
    1. Local differential privacy
      在每个client把数据共享给服务器之前就对各自的数据应用差分隐私的处理。但由于对每个client的数据都进行了加噪,尽管很好的保护了隐私,但很大地影响了服务器收集到的数据集的utility。

    2. Distributed differential privacy
      每个client首先计算和编码一个minimal (application specific) focused report,然后把encoded reports发送给secure computation function,它的输出满足differential privacy。选择不同的secure computation function可以应对不同的threat models。Distributed differential privacy比Local differential privacy提供更好的utility,但它依赖于不同的setups和更强的假设。
      Distributed differential privacy 模型举例 : Distributed DP via secure aggregation (通过安全聚合来确保central server获得聚合的结果,同时确保不会将各设备和参与者的参数暴露给central server)、Distributed DP via secure shuffling(由secure shuffler把每个client从LDP协议得到的数据进行随机化,最后再发送给central server)。

    3. Hybrid differential privacy
      根据用户不同的信任偏好对他们进行分类,再对不同的分组应用不同的模型。

4.3 \, Protections Against External Malicious Actors
  • Central Differential Privacy
    user-level differential privacy used in FL’s iterative training process.
    具体过程类似于之前看过的"-2- Deep Learning with Differential Privacy".
    To limit or eliminate the information that could be learned about an individual from the iterates.

  • Concealing the Iterates
    在TEE模型下可以对参与者隐藏模型的 iterates (the newly updated versions of the model after each round of training)

  • Repeated Analyses over Evolving Data , Preventing Model Theft and Misuse

4.4 \, Protections Against an Adversarial Server
  • 依然应用Local differential privacy, Distributed differential privacy, Hybrid differential privacy,主要运用Distributed differential privacy
4.5 \, User Perception
  • the Pufferfish framework of privacy [235]
    该框架允许各个用户指定自己的隐私需求,允许analyst指定一类受保护的 predicates,对这些predicates应用差分隐私的处理,而其他的predicates可以在没有差分隐私或隐私预算较小的情况下进行学习。




Ref

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., … & d’Oliveira, R. G. (2019). Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977.

这篇关于【论文记录】Advances and Open Problems in Federated Learning的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445057

相关文章

Java使用SLF4J记录不同级别日志的示例详解

《Java使用SLF4J记录不同级别日志的示例详解》SLF4J是一个简单的日志门面,它允许在运行时选择不同的日志实现,这篇文章主要为大家详细介绍了如何使用SLF4J记录不同级别日志,感兴趣的可以了解下... 目录一、SLF4J简介二、添加依赖三、配置Logback四、记录不同级别的日志五、总结一、SLF4J

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定