scikit-opt几种数值模拟退火的代码示例,和参数详解,以及基础模拟退火的原理代码示例

本文主要是介绍scikit-opt几种数值模拟退火的代码示例,和参数详解,以及基础模拟退火的原理代码示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python基础模拟退火原理示例

模拟退火的特性决定了一般可以用于算法的调参,相比较遗传算法来说,普遍更快一些,但是也更容易陷入局部最优。相对来说,遗传算法的更新解机制是在最每一个局部最优解附近盘旋游荡,则更容易达到全局最优,但是计算量则更大。

# -*- encoding: utf-8 -*-
'''
@File    :   simulate_anneal.py
@Time    :   2020/10/28 12:45:28
@Author  :   DataMagician 
@Version :   1.0
@Contact :   408903228@qq.com
'''# here put the import libimport numpy as np
import matplotlib.pyplot as plt# ### $ 根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:$
# # $ P(dE) = exp( dE/(k*T) ) $
# ### $ 其中k是一个常数,exp表示自然指数,且dE<0(温度总是降低的)。这条公式指明了 $# # 单变量退火
def PDE(DE, T, k=1):'''Args:DE:t:k:Returns:'''return np.exp((DE) / (k * T))def DE_function(new, old):'''Args:new:old:Returns:'''return new - olddef jump(DE, T, k=1):'''Args:DE:T:k:Returns:'''return PDE(DE, T, k) > np.random.rand() and 0 or 1def simulate_anneal(func,parameter={"T": 1, #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间"T_min": 0, #温度的下限,若温度T达到T_min,则停止搜索"r": 0.0001, #用于控制降温的快慢 值越小T更新越快,退出越快"expr": 0, #初始解"jump_max": np.inf,#最大回炉停留次数"k":1 # k越小越不容易退出}):'''Args:func:parameter:Returns:'''path, funcpath = [], []T = parameter["T"]  # 系统温度,初时应在高温T_min = parameter["T_min"]  # 最小温度值r = parameter["r"]  # 降温速率counter = 0expr = parameter["expr"]  # 假设初解jump_max = parameter["jump_max"]  # 最大冷却值jump_counter = 0k = parameter["k"]while T > T_min:counter += 1new_expr = func.__next__()  # 迭代新解funcpath.append(new_expr)DE = DE_function(new_expr , expr)if DE <= 0:# 如果新解比假设初解或者上一个达标解要小,就更新解expr = new_expr# 跳出域值更新为0 jump_counter = 0elif DE > 0:# 如果新解比假设初解或者上一个达标解要大,就不更新解expr = exprif jump(DE, T,k):# 每更新一次T更新一次T *= rjump_counter += 1if jump_counter > jump_max:print("最大回炉冷却次数:", jump_counter)return expr, path, funcpathpath.append(expr)print("{}{}{}{}{}{}{}{}".format('系统温度:', T, ' 新状态:', expr, ' 迭代轮次:',counter, ' DE:', DE))return expr, path, funcpathif __name__ == "__main__":def f():  # 待优化最小函数'''Returns:'''for x in np.random.randn(1000):yield xexpr, path, funcpath = simulate_anneal(f(),parameter={"T": 1,"T_min": 0,"r": 0.4,"expr": 0,"jump_max": 1000,"k":0.000001})print(expr)plt.figure(figsize=(16, 9))  # %%plt.plot(path, c='g')plt.plot(funcpath, c='r')plt.show()plt.close()

请添加图片描述

快速模拟退火
from sko.SA import SAFast
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SAFast(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100 # 最大冷却停留计数器,保证快速退出,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行,lb = [-1,1,-1] #x的下限,ub = [2,3,4] #x的上限#,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,m = 1 # 0-正无穷,越大,越容易冷却退出,n = 1 # # 0-正无穷,越大,越不容易冷却退出,quench = 1 # 淬火指数,0-正无穷,越小则越慢,但是越能求出最小,越大则越快,但是容易陷入局部最优)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history),sa.iter_cycle)
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

纯数值模拟退火
from sko.SA import SimulatedAnnealingValue
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SimulatedAnnealingValue(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100000 # 冷却停留计数器,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行,lb = [-1,1,-1] #x的下限,ub = [2,3,4] #x的上限#,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,learn_rate = 0.0001 # 学习率,用于控制降温的快慢 值越小T更新越快,退出越快)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history))
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

柯西模拟退火
from sko.SA import SACauchy
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SACauchy(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100 # 冷却停留计数器,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行,lb = [-1,1,-1] #x的下限,ub = [2,3,4] #x的上限#,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,learn_rate = 0.1 # 学习率,用于控制降温的快慢 值越大T更新越快,退出越快)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history))
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

玻尔兹曼模拟退火
from sko.SA import SABoltzmann
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SABoltzmann(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100 # 冷却停留计数器,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行# ,lb = [-1,1,-1] #x的下限# ,ub = [2,3,4] #x的上限,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,learn_rate = 0.1 # 学习率,用于控制降温的快慢 值越大T更新越快,退出越快)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history))
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

这篇关于scikit-opt几种数值模拟退火的代码示例,和参数详解,以及基础模拟退火的原理代码示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/439828

相关文章

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

Android ClassLoader加载机制详解

《AndroidClassLoader加载机制详解》Android的ClassLoader负责加载.dex文件,基于双亲委派模型,支持热修复和插件化,需注意类冲突、内存泄漏和兼容性问题,本文给大家介... 目录一、ClassLoader概述1.1 类加载的基本概念1.2 android与Java Class

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

C#读写文本文件的多种方式详解

《C#读写文本文件的多种方式详解》这篇文章主要为大家详细介绍了C#中各种常用的文件读写方式,包括文本文件,二进制文件、CSV文件、JSON文件等,有需要的小伙伴可以参考一下... 目录一、文本文件读写1. 使用 File 类的静态方法2. 使用 StreamReader 和 StreamWriter二、二进