scikit-opt几种数值模拟退火的代码示例,和参数详解,以及基础模拟退火的原理代码示例

本文主要是介绍scikit-opt几种数值模拟退火的代码示例,和参数详解,以及基础模拟退火的原理代码示例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python基础模拟退火原理示例

模拟退火的特性决定了一般可以用于算法的调参,相比较遗传算法来说,普遍更快一些,但是也更容易陷入局部最优。相对来说,遗传算法的更新解机制是在最每一个局部最优解附近盘旋游荡,则更容易达到全局最优,但是计算量则更大。

# -*- encoding: utf-8 -*-
'''
@File    :   simulate_anneal.py
@Time    :   2020/10/28 12:45:28
@Author  :   DataMagician 
@Version :   1.0
@Contact :   408903228@qq.com
'''# here put the import libimport numpy as np
import matplotlib.pyplot as plt# ### $ 根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:$
# # $ P(dE) = exp( dE/(k*T) ) $
# ### $ 其中k是一个常数,exp表示自然指数,且dE<0(温度总是降低的)。这条公式指明了 $# # 单变量退火
def PDE(DE, T, k=1):'''Args:DE:t:k:Returns:'''return np.exp((DE) / (k * T))def DE_function(new, old):'''Args:new:old:Returns:'''return new - olddef jump(DE, T, k=1):'''Args:DE:T:k:Returns:'''return PDE(DE, T, k) > np.random.rand() and 0 or 1def simulate_anneal(func,parameter={"T": 1, #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间"T_min": 0, #温度的下限,若温度T达到T_min,则停止搜索"r": 0.0001, #用于控制降温的快慢 值越小T更新越快,退出越快"expr": 0, #初始解"jump_max": np.inf,#最大回炉停留次数"k":1 # k越小越不容易退出}):'''Args:func:parameter:Returns:'''path, funcpath = [], []T = parameter["T"]  # 系统温度,初时应在高温T_min = parameter["T_min"]  # 最小温度值r = parameter["r"]  # 降温速率counter = 0expr = parameter["expr"]  # 假设初解jump_max = parameter["jump_max"]  # 最大冷却值jump_counter = 0k = parameter["k"]while T > T_min:counter += 1new_expr = func.__next__()  # 迭代新解funcpath.append(new_expr)DE = DE_function(new_expr , expr)if DE <= 0:# 如果新解比假设初解或者上一个达标解要小,就更新解expr = new_expr# 跳出域值更新为0 jump_counter = 0elif DE > 0:# 如果新解比假设初解或者上一个达标解要大,就不更新解expr = exprif jump(DE, T,k):# 每更新一次T更新一次T *= rjump_counter += 1if jump_counter > jump_max:print("最大回炉冷却次数:", jump_counter)return expr, path, funcpathpath.append(expr)print("{}{}{}{}{}{}{}{}".format('系统温度:', T, ' 新状态:', expr, ' 迭代轮次:',counter, ' DE:', DE))return expr, path, funcpathif __name__ == "__main__":def f():  # 待优化最小函数'''Returns:'''for x in np.random.randn(1000):yield xexpr, path, funcpath = simulate_anneal(f(),parameter={"T": 1,"T_min": 0,"r": 0.4,"expr": 0,"jump_max": 1000,"k":0.000001})print(expr)plt.figure(figsize=(16, 9))  # %%plt.plot(path, c='g')plt.plot(funcpath, c='r')plt.show()plt.close()

请添加图片描述

快速模拟退火
from sko.SA import SAFast
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SAFast(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100 # 最大冷却停留计数器,保证快速退出,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行,lb = [-1,1,-1] #x的下限,ub = [2,3,4] #x的上限#,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,m = 1 # 0-正无穷,越大,越容易冷却退出,n = 1 # # 0-正无穷,越大,越不容易冷却退出,quench = 1 # 淬火指数,0-正无穷,越小则越慢,但是越能求出最小,越大则越快,但是容易陷入局部最优)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history),sa.iter_cycle)
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

纯数值模拟退火
from sko.SA import SimulatedAnnealingValue
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SimulatedAnnealingValue(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100000 # 冷却停留计数器,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行,lb = [-1,1,-1] #x的下限,ub = [2,3,4] #x的上限#,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,learn_rate = 0.0001 # 学习率,用于控制降温的快慢 值越小T更新越快,退出越快)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history))
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

柯西模拟退火
from sko.SA import SACauchy
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SACauchy(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100 # 冷却停留计数器,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行,lb = [-1,1,-1] #x的下限,ub = [2,3,4] #x的上限#,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,learn_rate = 0.1 # 学习率,用于控制降温的快慢 值越大T更新越快,退出越快)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history))
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

玻尔兹曼模拟退火
from sko.SA import SABoltzmann
import matplotlib.pyplot as plt
import pandas as pddef demo_func(x):return x[0] ** 2 + (x[1] - 0.05) ** 2 + x[2] ** 2sa = SABoltzmann(func=demo_func, x0=[1, 1, 1] # 初始x解,初始解越大则越难到达最小值,越小则越容易错过, T_max=1 #系统的温度,系统初始应该要处于一个高温的状态 初始温度越高,且马尔科夫链越长,算法搜索越充分,得到全局最优解的可能性越大,但这也意味着需要耗费更多的计算时间, T_min=1e-9  #温度的下限,若温度T达到T_min,则停止搜索, L=300 #最大迭代次数,每个温度下的迭代次数(又称链长), max_stay_counter=100 # 冷却停留计数器,如果 best_y 在最大停留计数器次数(也称冷却时间)内保持不变,则停止运行# ,lb = [-1,1,-1] #x的下限# ,ub = [2,3,4] #x的上限,hop = [3,2,1] # x 的上下限最大差值 hop=ub-lb ,learn_rate = 0.1 # 学习率,用于控制降温的快慢 值越大T更新越快,退出越快)
best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y:', best_y,"y_history:",len(sa.best_y_history))
plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0))
plt.show()

请添加图片描述

这篇关于scikit-opt几种数值模拟退火的代码示例,和参数详解,以及基础模拟退火的原理代码示例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/439828

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Debezium 与 Apache Kafka 的集成方式步骤详解

《Debezium与ApacheKafka的集成方式步骤详解》本文详细介绍了如何将Debezium与ApacheKafka集成,包括集成概述、步骤、注意事项等,通过KafkaConnect,D... 目录一、集成概述二、集成步骤1. 准备 Kafka 环境2. 配置 Kafka Connect3. 安装 D

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

Spring Cloud LoadBalancer 负载均衡详解

《SpringCloudLoadBalancer负载均衡详解》本文介绍了如何在SpringCloud中使用SpringCloudLoadBalancer实现客户端负载均衡,并详细讲解了轮询策略和... 目录1. 在 idea 上运行多个服务2. 问题引入3. 负载均衡4. Spring Cloud Load

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景