基于LSTM模型的股票价格趋势预测,预测未来一天的开盘价格(附代码详解与注释)

本文主要是介绍基于LSTM模型的股票价格趋势预测,预测未来一天的开盘价格(附代码详解与注释),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一:简介

该股票价格选取了谷歌股票2012年1月3日至2016年12月20日,每天股票开盘的价格,其中2016年11月30日之前的股票价格作为LSTM模型的训练数据集。12月1日至20日的开盘价格作为股票价格的预测集。

数据展示:

测试集数据如该图所示;

二:模型介绍

LSTM模型是基于时间序列的模型,其内的神经元细胞具有记忆功能,即在该问题上,就是之前的开盘价格会影响后期的开盘价格,意思是12月20日早上的开盘价格受12月19日开盘价格的影响,于是,LSTM模型内的记忆细胞就会选择性的记住12月19日的价格。这是对LSTM的直白理解。如有问题请留言指正。严谨的LSTM结果模型如下图所示:

三:代码实现

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# Part 1- Data Preprocessing
#importing training set
training_set=pd.read_csv('Google_Stock_Price_Train.csv')
#extract open value from the trainng data
training_set=training_set.iloc[:,1:2].values
#Feature Scaling
from sklearn.preprocessing import MinMaxScaler
sc=MinMaxScaler()
training_set=sc.fit_transform(training_set)
#Getting the input and output
X_train= training_set[:1236]
print(X_train)
Y_train=training_set[1:1257]
print(Y_train)
#Reshaping
X_train=np.reshape(X_train,(1236,1,1))
#Part-2 Building RNN
#importing keras library and packages
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
#Initalizing RNN
regressor=Sequential()
regressor.add(LSTM(units=50,activation='sigmoid', input_shape=(1,1)))
#Adding output layer (default argument)
regressor.add(Dense(units=1))
#Compile LSTM
regressor.compile(optimizer='adam',loss='mean_squared_error')
#Fitting the RNN on training set
regressor.fit(X_train,Y_train,batch_size=50,epochs=200)
#Part 3-Making Prediction and Visualizing Results
#Getting real Stock price for 2017
test_set=pd.read_csv('Google_Stock_Price_Test.csv')
real_stock_price=test_set.iloc[:,1:2].values
print(real_stock_price)
real_stock_price1=test_set.iloc[:,1:2].values
print(real_stock_price1)
#Getting predicted Stock price for 2017
inputs=real_stock_price
inputs=sc.transform(inputs)
inputs=np.reshape(inputs,(20,1,1))  #scaling the values
predicted_stock_price = regressor.predict(inputs)
predicted_stock_price = sc.inverse_transform(predicted_stock_price) #scaling to input values
#Visualize the results
x=[]
y1=[]
for i  in range(20):x.append(i)
for j in range(20):y1.append(j)
plt.plot(x,real_stock_price1,'ro',color='red',label='Real Stock Price')
plt.plot(y1,predicted_stock_price,'ro',color='green',label='Predicted Stock Price')
plt.title('Stock Price Prediction')
plt.xlabel('Time')
plt.ylabel('Stock Price')
plt.legend()
plt.show()
#Part 4- Evaluating the RNN
# since it is linear regression problem we will evaluate RMSE
import math
from sklearn.metrics import mean_squared_error
rmse=math.sqrt(mean_squared_error(real_stock_price, predicted_stock_price))
#expressing RMSE in percentage
rmse=rmse/800        # 800 becasue it is average value

训练结果:

............

 50/1236 [>.............................] - ETA: 0s - loss: 1.5879e-04
 950/1236 [======================>.......] - ETA: 0s - loss: 2.3606e-04
1236/1236 [==============================] - 0s 59us/step - loss: 2.5158e-04
Epoch 200/200

  50/1236 [>.............................] - ETA: 0s - loss: 6.5003e-04
1050/1236 [========================>.....] - ETA: 0s - loss: 2.7387e-04
1236/1236 [==============================] - 0s 53us/step - loss: 2.5892e-04

结果展示:

四:总结

该模型的主要目的就是训练该数据集根据前一天的开盘输入,能够预测出后一天的开盘价格,因此,输入训练集时输入0-1236行开盘价格为输入,而标签及为该1-2237行开盘价格,即标签往后推迟一天。最后训练的模型就行在测试集上进行测试。我将输出结果展示为散点图而不是折线图,其目的就是为了好给大家展示该预测结果与其真实值还是相当来说比较准的,但是该预测只是预测开盘价的走势。股票还有很多影响因素,其方法类似。

这篇关于基于LSTM模型的股票价格趋势预测,预测未来一天的开盘价格(附代码详解与注释)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/439654

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}