【MATLAB】EWT分解+FFT+HHT组合算法

2023-12-01 02:20

本文主要是介绍【MATLAB】EWT分解+FFT+HHT组合算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有意向获取代码,请转文末观看代码获取方式~也可转原文链接获取~

1 基本定义

EWT+FFT+HHT组合算法是一种广泛应用于信号处理领域的算法,它结合了经验小波变换(Empirical Wavelet Transform,EWT)、快速傅里叶变换(Fast Fourier Transform,FFT)和希尔伯特黄变换算法(Hilbert-Huang Transform,HHT)的优点,具有较高的计算效率和准确性。

  1. 经验小波变换(EWT):EWT是一种基于数据自适应的信号分解方法,它通过分析信号的局部特征来选择合适的小波基进行信号分解。与传统的固定小波基不同,EWT能够更好地适应不同类型的信号,并提供更准确的分解结果。

  2. 快速傅里叶变换(FFT):FFT是一种高效计算离散傅里叶变换(DFT)的算法,它能够快速计算信号在频域上的表示。通过将信号从时域转换到频域,我们可以更好地理解信号的频率成分和特征。

  3. 希尔伯特黄变换算法(HHT):HHT是一种用于非线性和非平稳信号处理的算法,它通过经验模式分解(Empirical Mode Decomposition,EMD)将信号分解为一系列固有模式函数(Intrinsic Mode Functions,IMF),然后对每个IMF进行希尔伯特谱分析,得到信号的时频分布和能量特征。

在 EWT+FFT+HHT 组合算法中,首先使用 EWT 对信号进行自适应分解,得到一系列本征模函数(Intrinsic Mode Functions,IMF);然后对每个 IMF 进行 FFT 计算其频谱特征;最后使用 HHT 对每个 IMF 进行希尔伯特谱分析,得到信号的时频分布和能量特征。这种组合算法能够充分利用三种方法的优点,具有较高的计算效率和准确性,适用于各种类型的信号处理任务。

除了上述提到的优点,EWT+FFT+HHT组合算法还具有以下特点:

  1. 自适应性:EWT能够根据信号的局部特征自适应地选择合适的小波基进行信号分解,从而更好地适应不同类型的信号。

  2. 高效性:FFT是一种快速计算离散傅里叶变换的算法,能够高效地计算信号的频域表示。HHT在处理非线性和非平稳信号时具有较高的计算效率。

  3. 非线性分析能力:HHT能够处理非线性和非平稳信号,通过EMD将信号分解为IMF,然后对每个IMF进行希尔伯特谱分析,得到信号的时频分布和能量特征。

  4. 多尺度分析能力:EWT和HHT都具有多尺度分析能力,能够同时在不同的尺度上分析信号的局部和全局特征。

  5. 广泛适用性:EWT、FFT和HHT都是广泛适用于各种类型的信号处理任务,包括但不限于信号去噪、特征提取、异常检测、时间序列分析等。

总之,EWT+FFT+HHT组合算法是一种非常强大的信号处理工具,它结合了三种方法的优点,具有自适应性、高效性、非线性分析能力和多尺度分析能力等特点,适用于各种类型的信号处理任务。

EWT+FFT+HHT组合算法还有一些其他的特性和优势。

  1. 鲁棒性:由于EWT、FFT和HHT都是基于数据的方法,它们对噪声和异常值具有较强的鲁棒性。即使在存在噪声和异常值的情况下,这些方法也能够得到较好的结果。

  2. 多域分析能力:EWT和FFT能够在时域和频域上进行分析,而HHT则能够在时频域上进行分析。因此,EWT+FFT+HHT组合算法具有多域分析能力,能够提供更全面的信号特征。

  3. 跨领域应用:由于EWT、FFT和HHT都具有广泛的应用领域,因此EWT+FFT+HHT组合算法也具有跨领域应用的能力。它可以应用于各种不同的领域,包括但不限于医学图像处理、地震信号处理、金融时间序列分析等。

  4. 可解释性:相对于一些黑箱机器学习方法,EWT+FFT+HHT组合算法具有较好的可解释性。使用者可以理解算法的每个步骤和原理,从而更好地解释结果和做出决策。

综上所述,EWT+FFT+HHT组合算法是一种非常强大的信号处理工具,它具有自适应性、高效性、非线性分析能力、多尺度分析能力和鲁棒性等特点,适用于各种类型的信号处理任务,并具有广泛的应用前景。

2 出图效果

附出图效果如下:

附视频教程操作:

【MATLAB】EWT分解+FFT+HHT组合算法

这篇关于【MATLAB】EWT分解+FFT+HHT组合算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/439433

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个