索尼 toio™ 应用创意开发征文|微生物行为模拟

2023-12-01 00:10

本文主要是介绍索尼 toio™ 应用创意开发征文|微生物行为模拟,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Toio™ Q宝小机器人的灵活性和可编程性使其成为了一个令人兴奋的工具,让孩子可以将编程与实际操作相结合,在玩乐中增长编程知识,加强动手能力,对计算机学科产生更大的兴趣。

本文就会介绍一个使用Q宝机器人在宏观世界中模拟微生物活动的例子。细胞生物虽然结构简单,但也具备向环境中的食物自动靠拢,最终吃掉食物的能力。我们可以使用Q宝小机器人来模拟这一过程,让孩子发现电子计算机操作的程序设备也可以模仿生物行为的现象,并对生物与机械的关系作出更多思考。

首先我们需要连接两个toio™核心立方体,一个代表微生物(CellCube),另一个代表食物(FoodCube)。这段代码首先使用connect_to_toio(device_name)函数连接到指定名称的toio™核心立方体。在这里,我们连接了名为"CellCube"和"FoodCube"的两个立方体,并分别将它们分配给Cell_cube和food_cube变量。

async def connect_to_toio(device_name):device_list = await BLEScanner.scan(1)for device in device_list:if device.name == device_name:cube = ToioCoreCube(device.interface)await cube.connect()return cubereturn None# 连接微生物和食物 Toio 立方体
Cell_cube = await connect_to_toio("CellCube")
food_cube = await connect_to_toio("FoodCube")

然后我们将移动微生物(CellCube)向食物(FoodCube)靠近,模拟微生物的觅食行为。这段代码定义了move_to_random_position(cube, x, y)函数,用于将toio™核心立方体移动到指定的位置(x, y)。在游戏循环game_loop()中,我们首先连接两个立方体,然后生成一个随机位置作为食物的目标位置。接下来,我们根据当前位置和目标位置,逐步移动微生物向食物靠近,直到微生物吃掉食物。

async def move_to_random_position(cube, x, y):await cube.api.motor.motor_control_target(timeout=5,movement_type=MovementType.Linear,speed=Speed(max=100, speed_change_type=SpeedChangeType.AccelerationAndDeceleration),target=TargetPosition(cube_location=CubeLocation(point=Point(x=x, y=y), angle=0),rotation_option=RotationOption.AbsoluteOptimal),)async def game_loop():# ...(连接设备和生成目标位置的代码)# 模拟微生物向食物移动while Cell_x != random_x or Cell_y != random_y:# ...(计算下一步移动方向的代码)# 移动微生物到下一步位置await Cell_cube.api.motor.motor_control_target(timeout=1,movement_type=MovementType.Linear,speed=Speed(max=100, speed_change_type=SpeedChangeType.AccelerationAndDeceleration),target=TargetPosition(cube_location=CubeLocation(point=Point(x=Cell_x, y=Cell_y), angle=0),rotation_option=RotationOption.AbsoluteOptimal),)print("微生物吃掉了食物!")# 断开连接await Cell_cube.disconnect()await food_cube.disconnect()# 延迟一段时间后继续下一轮游戏await asyncio.sleep(3)

其中微生物(CellCube)通过toio™核心立方体的移动控制逐步靠近食物(FoodCube),并在吃掉食物后结束游戏然后开始下一轮的操作!

在这里插入图片描述

完整代码

import asyncio
import random
from toio import *async def connect_to_toio(device_name):device_list = await BLEScanner.scan(1)for device in device_list:if device.name == device_name:cube = ToioCoreCube(device.interface)await cube.connect()return cubereturn Noneasync def move_to_random_position(cube, x, y):await cube.api.motor.motor_control_target(timeout=5,movement_type=MovementType.Linear,speed=Speed(max=100, speed_change_type=SpeedChangeType.AccelerationAndDeceleration),target=TargetPosition(cube_location=CubeLocation(point=Point(x=x, y=y), angle=0),rotation_option=RotationOption.AbsoluteOptimal),)async def game_loop():while True:# 连接两个 Toio 核心立方体,一个表示微生物,一个表示食物Cell_cube = await connect_to_toio("CellCube")food_cube = await connect_to_toio("FoodCube")if Cell_cube is None or food_cube is None:print("未找到设备")return# 生成随机位置作为食物的目标位置random_x = random.randint(0, 300)  # 随机生成 x 坐标random_y = random.randint(0, 300)  # 随机生成 y 坐标# 移动食物到随机位置await move_to_random_position(food_cube, random_x, random_y)# 微生物的当前位置Cell_x, Cell_y = 150, 150  # 初始位置# 微生物每次移动的步长step = 10# 模拟微生物缓慢移动while Cell_x != random_x or Cell_y != random_y:# 计算下一步移动的方向if Cell_x < random_x:Cell_x += stepelif Cell_x > random_x:Cell_x -= stepif Cell_y < random_y:Cell_y += stepelif Cell_y > random_y:Cell_y -= step# 移动微生物到下一步位置await Cell_cube.api.motor.motor_control_target(timeout=1,movement_type=MovementType.Linear,speed=Speed(max=100, speed_change_type=SpeedChangeType.AccelerationAndDeceleration),target=TargetPosition(cube_location=CubeLocation(point=Point(x=Cell_x, y=Cell_y), angle=0),rotation_option=RotationOption.AbsoluteOptimal),)print("微生物吃掉了食物!")# 断开连接await Cell_cube.disconnect()await food_cube.disconnect()# 延迟一段时间后继续下一轮游戏await asyncio.sleep(3)async def main():await game_loop()if __name__ == "__main__":asyncio.run(main())

孩子如果感兴趣,还可以对上述代码进行修改,控制食物在不同位置出现的概率。之后孩子会发现,无论食物出现在哪里,微生物都会自动移动到食物旁边。家长可以借机向孩子讲述自然界中微生物的觅食能力,并启发孩子思考进化与编程之间的关系。家长甚至可以同时让孩子使用显微镜观察真实微生物的觅食活动,并与Q宝机器人的觅食操作对比,进一步加深自然界与人造程序之间区别与联系的认知。总之,Q宝机器人可以充当非常合适的教学工具,让孩子在充满乐趣的体验中学习和思考更多知识。

这篇关于索尼 toio™ 应用创意开发征文|微生物行为模拟的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/439074

相关文章

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis