tiny4412之内存控制器工作时序(DDR3 SDRAM)(二)

2023-12-01 00:08

本文主要是介绍tiny4412之内存控制器工作时序(DDR3 SDRAM)(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Table of Contents

一、SDRAM 简易工作流程

二、tRCD 行列延迟RAS to CAS Delay

三、 CL(RL,Read Latency)读取潜伏期

四、tWR 写延迟

五、突发长度--(Burst Lengths)

六、预充电时间tRP

七、刷新时间

八、例说


一、SDRAM 简易工作流程

二、tRCD 行列延迟RAS to CAS Delay

行地址确定之后,就要对列地址进行寻址了。读写的信号和列地址是同时发过来的,读写的操作取决于WE#引脚,当他使能则为写,否则为读。

在发送列读写命令时必须要与行有效命令有一个间隔,这个间隔被定义为 tRCD,即RAS to CAS Delay(RAS 至 CAS 延迟),大家也可以理解为行选通周期,简单说就是,发完行地址再延迟tRCD时间发送列地址,这应该是根据芯片存储阵列电子元件响应时间(从一种状态到另一种状态变化的过程)所制定的延迟。

广义的 tRCD 以时钟周期(tCK,Clock Time)数为单位,比如 tRCD=2,就代表延迟周期为两个时钟周期,具体到确切的时间,则要根据时钟频率而定,对于PC100 SDRAM,tRCD=2,代表1000/100 * 2 = 20ns 的延迟,下图是tRCD=3的时序图。

 

 

三、 CL(RL,Read Latency)读取潜伏期

在选定列地址后,就已经确定了具体的存储单元,剩下的事情就是数据通过数据 I/O 通道(DQ)输出到内存总线上了。 

但是在CAS发出之后,仍要经过一定的时间才能有数据输出,从CAS(列有效信号)与读取命令发出到第一笔数据输出的这段时间,被定义为 CL(CAS Latency,CAS潜伏期)。由于CL只在读取时出现,所以 CL 又被称为读取潜伏期(RL,Read Latency),下图是CL=2的示意图。

 

四、tWR 写延迟

数据写入的操作也是在 tRCD 之后进行,但此时没有了 CL(记住,CL 只出现在读取操作中),行寻址与列寻址的时序图和上文一样,只是在列寻址时,WE#为有效状态。 为了保证数据的可靠写入,都会留出足够的写入/校正时间(tWR,Write Recovery Time),这个操作也被称作写回(Write Back)。tWR 至少占用一个时钟周期或再多一点(时钟频率越高,tWR 占用周期越多)

五、突发长度--(Burst Lengths)

突发(Burst)是指在同一行中相邻的存储单元连续进行数据传输的方式,连续传输所涉及到存储单元(列)的数量就是突发长度(Burst Lengths,简称 BL)。 只要指定起始列地址与突发长度,内存就会依次地自动对后面相应数量的存储单元进行读/写操作而不再需要控制器连续地提供列地址。这样,除了第一笔数据的传输需要若干个周期(主要是之前的延迟,一般的是 tRCD+CL)外,其后每个数据只需一个周期的即可获得。

六、预充电时间tRP

由于 SDRAM 的寻址具体独占性,所以在进行完读写操作后,如果要对同一个Bank的另一行进行寻址,就要将原来有效(工作)的行关闭,重新发送行/列地址。Bank 关闭现有工作行,准备打开新行的操作就是预充电(Precharge)。 在发出预充电命令之后,要经过一段时间才能允许发送 RAS 行有效命令打开新的工作行,这个间隔被称为tRP(Precharge command Period,预充电有效周期)。和 tRCD、CL 一样,tRP 的单位也是时钟周期数,具体值视时钟频率而定。

七、刷新时间

之所以称为 DRAM,就是因为它要不断进行刷新(Refresh)才能保留住数据,因此它是 DRAM 最重要的操作。刷新操作与预充电中重写的操作一样,都是用 S-AMP 先读再写。 但为什么有预充电操作还要进行刷新呢?因为预充电是对一个或所有L-Bank 中的工作行操作,并且是不定期的,而刷新则是有固定的周期,依次对所有行进行操作,以保留那些久久没经历重写的存储体中的数据。但与所有 L-Bank 预充电不同的是,这里的行是指所有 L-Bank 中地址相同的行,而预充电中各 L-Bank 中的工作行地址并不是一定是相同的。比如我有四片,刷新是我依次刷新四片内存中的某个地址,然后再刷下一个;而预充电的工作行地址可以不同。

那么要隔多长时间重复一次刷新呢?目前公认的标准是,存储体中电容的数据有效保存期上限是64ms(毫秒,1/1000 秒),也就是说每一行刷新的循环周期是 64ms。这样刷新速度就是:行数量/64ms。我们在看内存规格时,经常会看到

4096RefreshCycles/64ms 或 8192RefreshCycles/64ms 的标识,这里的 4096 与 8192 就代表这个芯片中每个 L-Bank 的行数。刷新命令一次对一行有效,发送间隔也是随总行数而变化4096 行时为 15.625μs(微秒,1/1000 毫秒),8192 行时就为 7.8125μs。 

刷新操作分为两种:自动刷新(Auto Refresh,简称 AR)与自刷新(Self Refresh,简称 SR)。

SR 则主要用于休眠模式低功耗状态下的数据保存,这方面最著名的应用就是 STR(Suspend to RAM,休眠挂起于内存)。在发出 AR 命令时,将 CKE 置于无效状态,就进入了 SR 模式,此时不再依靠系统时钟工作,而是根据内部的时钟进行刷新操作。在 SR 期间除了 CKE 之外的所有外部信号都是无效的(无需外部提供刷新指令),只有重新使 CKE 有效才能退出自刷新模式并进入正常操作状态。

八、例说

以上就是SDRAM是主要工作步骤,对比一下最上面的简易工作流程图,时间是不是就很清楚了呢?

表8-1、DDR3时序时间参考表

 

CL=9ns:CAS Latency,CAS 潜伏期,CAS与读取命令发出到第一笔数据输出的时间  ----读操作

tRCD=13.5ns:RAS to CAS Delay(RAS 至 CAS 延迟),行地址发完后,再发列地址的延迟时间  ----行列地址延迟

tRP=13.5ns 关闭现有工作行,准备打开新行,经过一段时间才能允许发送 RAS 行有效命令打开新的工作行的时间 ----预充电时间

OK,至此三个时间全部清清楚楚了。

这篇关于tiny4412之内存控制器工作时序(DDR3 SDRAM)(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/439058

相关文章

关于Java内存访问重排序的研究

《关于Java内存访问重排序的研究》文章主要介绍了重排序现象及其在多线程编程中的影响,包括内存可见性问题和Java内存模型中对重排序的规则... 目录什么是重排序重排序图解重排序实验as-if-serial语义内存访问重排序与内存可见性内存访问重排序与Java内存模型重排序示意表内存屏障内存屏障示意表Int

如何测试计算机的内存是否存在问题? 判断电脑内存故障的多种方法

《如何测试计算机的内存是否存在问题?判断电脑内存故障的多种方法》内存是电脑中非常重要的组件之一,如果内存出现故障,可能会导致电脑出现各种问题,如蓝屏、死机、程序崩溃等,如何判断内存是否出现故障呢?下... 如果你的电脑是崩溃、冻结还是不稳定,那么它的内存可能有问题。要进行检查,你可以使用Windows 11

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

工作常用指令与快捷键

Git提交代码 git fetch  git add .  git commit -m “desc”  git pull  git push Git查看当前分支 git symbolic-ref --short -q HEAD Git创建新的分支并切换 git checkout -b XXXXXXXXXXXXXX git push origin XXXXXXXXXXXXXX

嵌入式方向的毕业生,找工作很迷茫

一个应届硕士生的问题: 虽然我明白想成为技术大牛需要日积月累的磨练,但我总感觉自己学习方法或者哪些方面有问题,时间一天天过去,自己也每天不停学习,但总感觉自己没有想象中那样进步,总感觉找不到一个很清晰的学习规划……眼看 9 月份就要参加秋招了,我想毕业了去大城市磨练几年,涨涨见识,拓开眼界多学点东西。但是感觉自己的实力还是很不够,内心慌得不行,总怕浪费了这人生唯一的校招机会,当然我也明白,毕业

JVM内存调优原则及几种JVM内存调优方法

JVM内存调优原则及几种JVM内存调优方法 1、堆大小设置。 2、回收器选择。   1、在对JVM内存调优的时候不能只看操作系统级别Java进程所占用的内存,这个数值不能准确的反应堆内存的真实占用情况,因为GC过后这个值是不会变化的,因此内存调优的时候要更多地使用JDK提供的内存查看工具,比如JConsole和Java VisualVM。   2、对JVM内存的系统级的调优主要的目的是减少

JVM 常见异常及内存诊断

栈内存溢出 栈内存大小设置:-Xss size 默认除了window以外的所有操作系统默认情况大小为 1MB,window 的默认大小依赖于虚拟机内存。 栈帧过多导致栈内存溢出 下述示例代码,由于递归深度没有限制且没有设置出口,每次方法的调用都会产生一个栈帧导致了创建的栈帧过多,而导致内存溢出(StackOverflowError)。 示例代码: 运行结果: 栈帧过大导致栈内存

理解java虚拟机内存收集

学习《深入理解Java虚拟机》时个人的理解笔记 1、为什么要去了解垃圾收集和内存回收技术? 当需要排查各种内存溢出、内存泄漏问题时,当垃圾收集成为系统达到更高并发量的瓶颈时,我们就必须对这些“自动化”的技术实施必要的监控和调节。 2、“哲学三问”内存收集 what?when?how? 那些内存需要回收?什么时候回收?如何回收? 这是一个整体的问题,确定了什么状态的内存可以

husky 工具配置代码检查工作流:提交代码至仓库前做代码检查

提示:这篇博客以我前两篇博客作为先修知识,请大家先去看看我前两篇博客 博客指路:前端 ESlint 代码规范及修复代码规范错误-CSDN博客前端 Vue3 项目开发—— ESLint & prettier 配置代码风格-CSDN博客 husky 工具配置代码检查工作流的作用 在工作中,我们经常需要将写好的代码提交至代码仓库 但是由于程序员疏忽而将不规范的代码提交至仓库,显然是不合理的 所

NGINX轻松管理10万长连接 --- 基于2GB内存的CentOS 6.5 x86-64

转自:http://blog.chinaunix.net/xmlrpc.php?r=blog/article&uid=190176&id=4234854 一 前言 当管理大量连接时,特别是只有少量活跃连接,NGINX有比较好的CPU和RAM利用率,如今是多终端保持在线的时代,更能让NGINX发挥这个优点。本文做一个简单测试,NGINX在一个普通PC虚拟机上维护100k的HTTP