【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题)

本文主要是介绍【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

六、图与网络分析

最大流问题

最大流问题的数学规划模型为: max ⁡ v = f 12 + f 13 { f 12 + f 13 − f 57 − f 67 = 0 f 13 + f 23 = f 34 + f 35 . . . 0 ≤ f i j ≤ c i j \max v=f_{12}+f_{13}\\ \begin{cases} f_{12}+f_{13}-f_{57}-f_{67}=0 \\ f_{13}+f_{23}=f_{34}+f_{35} \\ ...\\ 0\leq f_{ij}\leq c_{ij} \end{cases} maxv=f12+f13 f12+f13f57f67=0f13+f23=f34+f35...0fijcij 第一个约束表示从起点流出的流量等于流入终点的流量;最后一个为容量限制条件;中间的约束为中间点的平衡条件。

满足容量限制条件和平衡条件(起点、终点和中间点)的网络流称为可行流,可行流总是存在的,如零流。

定义网络 G G G 中的一条初等链 μ \mu μ(所有顶点均不相同),方向为从起点到终点,若链上有弧与 μ \mu μ 方向一致,称为前向弧;若有弧与 μ \mu μ 的方向相反,称为后向弧。网络中 f i j = c i j f_{ij}=c_{ij} fij=cij 的弧称为饱和弧 f i j < c i j f_{ij}<c_{ij} fij<cij 的弧称为非饱和弧, f i j = 0 f_{ij}=0 fij=0 的弧称为零流弧

若某条链中所有前向弧非饱和,后向弧非零,称其为一条增广链

可行流为最大流的充要条件是不存在增广链。

从起点 v s v_s vs 到终点 v t v_t vt 的最大流的流量,等于分离 v s , v t v_s,v_t vs,vt 的最小截集的容量。

寻找最大流的标号法,称为 2F 算法。可分为两个过程,一是标号过程,二是调整过程。

标号过程先给起点标上 ( 0 , + ∞ ) (0,+\infty) (0,+) ,若在前向弧 ( v i , v j ) (v_i,v_j) (vi,vj) 上, f i j < c i j f_{ij}<c_{ij} fij<cij ,则给 v j v_j vj 标号 ( v s , l ( v j ) ) (v_s,l(v_j)) (vs,l(vj)) ,其中 l ( v j ) = min ⁡ { l ( v i ) , c i j − f i j } l(v_j)=\min\{l(v_i),c_{ij}-f_{ij}\} l(vj)=min{l(vi),cijfij} ;若在后向弧 ( v j , v i ) (v_j,v_i) (vj,vi) 上, f i j > 0 f_{ij}>0 fij>0 ,则给 v j v_j vj 标号 ( − v i , l ( v j ) ) (-v_i,l(v_j)) (vi,l(vj)) ,其中 l ( ( v j ) = min ⁡ { l ( v i ) , f i j } l((v_j)=\min\{l(v_i),f_{ij}\} l((vj)=min{l(vi),fij}

调整过程的调整量为终点的标号,令前向弧加上这个调整量,后向弧减去这个调整量。

当出现有多个收发点时,可以虚拟一个总发点和总收点或把所有收发点看成一个整体,先解决外部的流量分配,再解决整体内部的流量分配。当网络为无向图时,可以考虑用枚举法用最小截求最大流。标准的最大流问题应只有弧有容量限制,当出现某个节点也有容量限制时,应进行转换,将其分为两个节点 λ , μ \lambda,\mu λ,μ 。原来流入的弧全部连接到 λ \lambda λ ,原来流出的点全部从 μ \mu μ 节点流出。

最小费用流

链的费用为链中前向弧的费用减去后向弧的费用。所有增广链中费用最小的链称为最小费用增广链

定理:若 f f f 是流量为 V ( f ) V(f) V(f) 的最小费用流, μ \mu μ 是关于 f f f 的从 v s v_s vs v t v_t vt 的一条最小费用增广链,则 f f f 经过 μ \mu μ 调整流量后得到新的可行流 f ′ f' f f ′ f' f 一定是流量为 V ( f ) + θ V(f)+\theta V(f)+θ 的可行流中的最小费用流。

因此我们可以从某个初始的最小费用可行流(一般为零流)开始,寻找最小费用增广链,然后按照最大流的标号法,不断调整到目标流量。

初始的可行流好找,题目给了就用题目的,没给就用零流。那最小费用增广链怎么找?如果把每条弧的费用看成权,这就相当于求起点到终点的最短路。但是由于增广链中可能还有后向弧,无法直接利用最短路算法,因此需要构造一个有向网络 L ( f ) L(f) L(f)

构造的方法为:顶点仍然是原网络中的顶点,原来的每条弧变成两个方向相反的弧,正向弧如果非饱和,权重为费用 w i j w_{ij} wij ,否则为无穷;后向弧如果非零,权重为 − w i j -w_{ij} wij ,否则为无穷。而权重为无穷的弧我们一般会省略。

根据初始可行流,我们构造一个网络,找起终点的最短路,在这条最小费用增广链上按照最大流算法调整,得到新流。根据新流又可以构造网络,如此循环。当出现找不到最短路时,说明已经达到最大流,如果此时的流量仍然小于目标流量,说明不存在流量为目标流量的最小费用流。

最小费用最大流

此时没有目标流量的要求,因此要一直寻找最短路,直到找不到为止。

这篇关于【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438982

相关文章

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

nvm如何切换与管理node版本

《nvm如何切换与管理node版本》:本文主要介绍nvm如何切换与管理node版本问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录nvm切换与管理node版本nvm安装nvm常用命令总结nvm切换与管理node版本nvm适用于多项目同时开发,然后项目适配no

Java程序运行时出现乱码问题的排查与解决方法

《Java程序运行时出现乱码问题的排查与解决方法》本文主要介绍了Java程序运行时出现乱码问题的排查与解决方法,包括检查Java源文件编码、检查编译时的编码设置、检查运行时的编码设置、检查命令提示符的... 目录一、检查 Java 源文件编码二、检查编译时的编码设置三、检查运行时的编码设置四、检查命令提示符