【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题)

本文主要是介绍【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

六、图与网络分析

最大流问题

最大流问题的数学规划模型为: max ⁡ v = f 12 + f 13 { f 12 + f 13 − f 57 − f 67 = 0 f 13 + f 23 = f 34 + f 35 . . . 0 ≤ f i j ≤ c i j \max v=f_{12}+f_{13}\\ \begin{cases} f_{12}+f_{13}-f_{57}-f_{67}=0 \\ f_{13}+f_{23}=f_{34}+f_{35} \\ ...\\ 0\leq f_{ij}\leq c_{ij} \end{cases} maxv=f12+f13 f12+f13f57f67=0f13+f23=f34+f35...0fijcij 第一个约束表示从起点流出的流量等于流入终点的流量;最后一个为容量限制条件;中间的约束为中间点的平衡条件。

满足容量限制条件和平衡条件(起点、终点和中间点)的网络流称为可行流,可行流总是存在的,如零流。

定义网络 G G G 中的一条初等链 μ \mu μ(所有顶点均不相同),方向为从起点到终点,若链上有弧与 μ \mu μ 方向一致,称为前向弧;若有弧与 μ \mu μ 的方向相反,称为后向弧。网络中 f i j = c i j f_{ij}=c_{ij} fij=cij 的弧称为饱和弧 f i j < c i j f_{ij}<c_{ij} fij<cij 的弧称为非饱和弧, f i j = 0 f_{ij}=0 fij=0 的弧称为零流弧

若某条链中所有前向弧非饱和,后向弧非零,称其为一条增广链

可行流为最大流的充要条件是不存在增广链。

从起点 v s v_s vs 到终点 v t v_t vt 的最大流的流量,等于分离 v s , v t v_s,v_t vs,vt 的最小截集的容量。

寻找最大流的标号法,称为 2F 算法。可分为两个过程,一是标号过程,二是调整过程。

标号过程先给起点标上 ( 0 , + ∞ ) (0,+\infty) (0,+) ,若在前向弧 ( v i , v j ) (v_i,v_j) (vi,vj) 上, f i j < c i j f_{ij}<c_{ij} fij<cij ,则给 v j v_j vj 标号 ( v s , l ( v j ) ) (v_s,l(v_j)) (vs,l(vj)) ,其中 l ( v j ) = min ⁡ { l ( v i ) , c i j − f i j } l(v_j)=\min\{l(v_i),c_{ij}-f_{ij}\} l(vj)=min{l(vi),cijfij} ;若在后向弧 ( v j , v i ) (v_j,v_i) (vj,vi) 上, f i j > 0 f_{ij}>0 fij>0 ,则给 v j v_j vj 标号 ( − v i , l ( v j ) ) (-v_i,l(v_j)) (vi,l(vj)) ,其中 l ( ( v j ) = min ⁡ { l ( v i ) , f i j } l((v_j)=\min\{l(v_i),f_{ij}\} l((vj)=min{l(vi),fij}

调整过程的调整量为终点的标号,令前向弧加上这个调整量,后向弧减去这个调整量。

当出现有多个收发点时,可以虚拟一个总发点和总收点或把所有收发点看成一个整体,先解决外部的流量分配,再解决整体内部的流量分配。当网络为无向图时,可以考虑用枚举法用最小截求最大流。标准的最大流问题应只有弧有容量限制,当出现某个节点也有容量限制时,应进行转换,将其分为两个节点 λ , μ \lambda,\mu λ,μ 。原来流入的弧全部连接到 λ \lambda λ ,原来流出的点全部从 μ \mu μ 节点流出。

最小费用流

链的费用为链中前向弧的费用减去后向弧的费用。所有增广链中费用最小的链称为最小费用增广链

定理:若 f f f 是流量为 V ( f ) V(f) V(f) 的最小费用流, μ \mu μ 是关于 f f f 的从 v s v_s vs v t v_t vt 的一条最小费用增广链,则 f f f 经过 μ \mu μ 调整流量后得到新的可行流 f ′ f' f f ′ f' f 一定是流量为 V ( f ) + θ V(f)+\theta V(f)+θ 的可行流中的最小费用流。

因此我们可以从某个初始的最小费用可行流(一般为零流)开始,寻找最小费用增广链,然后按照最大流的标号法,不断调整到目标流量。

初始的可行流好找,题目给了就用题目的,没给就用零流。那最小费用增广链怎么找?如果把每条弧的费用看成权,这就相当于求起点到终点的最短路。但是由于增广链中可能还有后向弧,无法直接利用最短路算法,因此需要构造一个有向网络 L ( f ) L(f) L(f)

构造的方法为:顶点仍然是原网络中的顶点,原来的每条弧变成两个方向相反的弧,正向弧如果非饱和,权重为费用 w i j w_{ij} wij ,否则为无穷;后向弧如果非零,权重为 − w i j -w_{ij} wij ,否则为无穷。而权重为无穷的弧我们一般会省略。

根据初始可行流,我们构造一个网络,找起终点的最短路,在这条最小费用增广链上按照最大流算法调整,得到新流。根据新流又可以构造网络,如此循环。当出现找不到最短路时,说明已经达到最大流,如果此时的流量仍然小于目标流量,说明不存在流量为目标流量的最小费用流。

最小费用最大流

此时没有目标流量的要求,因此要一直寻找最短路,直到找不到为止。

这篇关于【管理运筹学】背诵手册(六)| 图与网络分析(最大流问题,最小费用最大流问题)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438982

相关文章

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

解决Cron定时任务中Pytest脚本无法发送邮件的问题

《解决Cron定时任务中Pytest脚本无法发送邮件的问题》文章探讨解决在Cron定时任务中运行Pytest脚本时邮件发送失败的问题,先优化环境变量,再检查Pytest邮件配置,接着配置文件确保SMT... 目录引言1. 环境变量优化:确保Cron任务可以正确执行解决方案:1.1. 创建一个脚本1.2. 修

Python 标准库time时间的访问和转换问题小结

《Python标准库time时间的访问和转换问题小结》time模块为Python提供了处理时间和日期的多种功能,适用于多种与时间相关的场景,包括获取当前时间、格式化时间、暂停程序执行、计算程序运行时... 目录模块介绍使用场景主要类主要函数 - time()- sleep()- localtime()- g

SpringBoot项目删除Bean或者不加载Bean的问题解决

《SpringBoot项目删除Bean或者不加载Bean的问题解决》文章介绍了在SpringBoot项目中如何使用@ComponentScan注解和自定义过滤器实现不加载某些Bean的方法,本文通过实... 使用@ComponentScan注解中的@ComponentScan.Filter标记不加载。@C

VMWare报错“指定的文件不是虚拟磁盘“或“The file specified is not a virtual disk”问题

《VMWare报错“指定的文件不是虚拟磁盘“或“Thefilespecifiedisnotavirtualdisk”问题》文章描述了如何修复VMware虚拟机中出现的“指定的文件不是虚拟... 目录VMWare报错“指定的文件不是虚拟磁盘“或“The file specified is not a virt

Mybatis提示Tag name expected的问题及解决

《Mybatis提示Tagnameexpected的问题及解决》MyBatis是一个开源的Java持久层框架,用于将Java对象与数据库表进行映射,它提供了一种简单、灵活的方式来访问数据库,同时也... 目录概念说明MyBATis特点发现问题解决问题第一种方式第二种方式问题总结概念说明MyBatis(原名