赛道 | 深延科技包揽SIGIR eCOM‘21双赛道冠军 自研自动特征工程框架神助攻

本文主要是介绍赛道 | 深延科技包揽SIGIR eCOM‘21双赛道冠军 自研自动特征工程框架神助攻,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

日前,信息检索领域的国际重要会议SIGIR 2021正在线上举行,来自深兰科技的DeepBlueAI团队参加了SIGIR eCom'21 竞赛,并且表现出色,在竞赛仅设的两个赛道中均获得冠军。

这是继2019年获得该系列比赛冠军以来的第二次夺冠,证明了深兰在电商推荐系统领域技术有着领先的地位。此外,更值得注意的是在第二个赛道,深兰自研的自动特征工程框架助力队伍获得了冠军,证明了其自动化机器学习的强大能力。

SIGIR eCom'21 竞赛由Coveo承办,是在2021 SIGIR Workshop on eCommerce上组织的一场电商商品推荐的比赛。该比赛从2017年开始,每年举办一次,今年已是第5届,吸引了来自NVIDIA、eBay、华东师范大学、乐天等知名公司和学校的团队。

一、SIGIR eCom'21冠军方案解读

1、赛题介绍

SIGIR eCom'21 竞赛分为两个赛题:

第一、商品推荐任务。赛题把一个会话分成前后两部分,给出前面一部分的数据,要求预测出后面会交互的商品,是一个大规模数据的推荐问题。

第二、购买意图预测任务。赛题给出一个有添加购物车行为的会话的前面一部分,要求预测最后用户是不是真的会买这个商品,是一个二分类问题。

2、团队成绩

比赛竞争非常激烈,最终DeepBlueAI团队击败了NVIDIA团队,在两个任务都取得了冠军。

3、数据分析

两个任务使用的是同一批数据,训练集测试集合起来一共有600多万,其中有100万会话数据和6万多个商品。经过分析,这两个任务分别有以下难点。

对于商品推荐任务:

首先数据量很大,对代码运行效率要求很高;第二有30%的测试集会话,给的初始信息很少,怎么有效优化冷启动的会话,提升得分?第三原始数据给出的字段极为丰富,怎么有效利用这些信息?

对于预测购买意图任务,主要是这个任务的评分指标很复杂:

首先,它定义了一个k,k表示第一次添加购物车之后会话还有几条记录。评分指标要求对k越小的样本预测正确奖励越高,针对这一点,怎么设计模型或者策略能够适应这个机制?

第二,每个k是一个分类,最终得分是每个类样本的平均准确率之和。因为使用了准确率(accuracy),加上正负样本不平衡,导致对模型的精度要求非常高。

4、竞赛方案

对于商品推荐任务,团队整体采用召回+排序的框架。

排序方面,团队尝试了很多方法,但是提升的效果有限。召回在这个任务里更为重要,在尝试了很多种方法后,团队最终使用了两个效果较好的召回。

(1)u2i_interact_i2i_itemcf:

先通过协同过滤的方法算出item与item之间的相似度,然后根据user历史交互的item,推荐与它最相似的item。

(2)u2url_url2i:

先统计访问当前url之后,下次访问每个item的概率;然后根据用户最后一个url推荐那些概率大的item。

对于预测购买意图任务:

首先是特征工程,团队采用了手动特征与自动特征工程相结合的方式。手动特征方面,主要是提取一些比较明显有效的特征,如用户是否查看了添加购物车商品的细节、查看了多久、用户一共交互了多少商品等比较直观的特征,效果上评分指标提升0.008;自动特征工程则是利用深兰自研autosmart框架提取的特征,这一部分特征效果提升0.002。

然后是后处理方面,针对评分指标的特性,基于k值不同对每个分类单独进行阈值调整,达到本地最好效果。

二、SIGIR 2019 eBay冠军方案解读

值得一提的是,早在2019年深延科技就在SIGIR 2019 eBay 数据挑战赛上夺得冠军。

当时比赛是由 eBay 搜索组组织的高精度召回任务。挑战针对的是电子商务搜索中的常见问题:展示非相关性排序时要显示的项目。用户通常按非相关性的维度进行排序,例如流行度、评论得分、价格等。

|关于深延科技|

深延科技成立于2018年,是深兰科技(DeepBlue)旗下的子公司,以“人工智能赋能企业与行业”为使命,助力合作伙伴降低成本、提升效率并挖掘更多商业机会,进一步开拓市场,服务民生。公司推出四款平台产品——深延智能数据标注平台、深延AI开发平台、深延自动化机器学习平台、深延AI开放平台,涵盖从数据标注及处理,到模型构建,再到行业应用和解决方案的全流程服务,一站式助力企业“AI”化。

这篇关于赛道 | 深延科技包揽SIGIR eCOM‘21双赛道冠军 自研自动特征工程框架神助攻的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438465

相关文章

SpringBoot中封装Cors自动配置方式

《SpringBoot中封装Cors自动配置方式》:本文主要介绍SpringBoot中封装Cors自动配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot封装Cors自动配置背景实现步骤1. 创建 GlobalCorsProperties

idea中创建新类时自动添加注释的实现

《idea中创建新类时自动添加注释的实现》在每次使用idea创建一个新类时,过了一段时间发现看不懂这个类是用来干嘛的,为了解决这个问题,我们可以设置在创建一个新类时自动添加注释,帮助我们理解这个类的用... 目录前言:详细操作:步骤一:点击上方的 文件(File),点击&nbmyHIgsp;设置(Setti

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

一文详解SQL Server如何跟踪自动统计信息更新

《一文详解SQLServer如何跟踪自动统计信息更新》SQLServer数据库中,我们都清楚统计信息对于优化器来说非常重要,所以本文就来和大家简单聊一聊SQLServer如何跟踪自动统计信息更新吧... SQL Server数据库中,我们都清楚统计信息对于优化器来说非常重要。一般情况下,我们会开启"自动更新

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

Flask 验证码自动生成的实现示例

《Flask验证码自动生成的实现示例》本文主要介绍了Flask验证码自动生成的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习... 目录生成图片以及结果处理验证码蓝图html页面展示想必验证码大家都有所了解,但是可以自己定义图片验证码

Python Excel实现自动添加编号

《PythonExcel实现自动添加编号》这篇文章主要为大家详细介绍了如何使用Python在Excel中实现自动添加编号效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、背景介绍2、库的安装3、核心代码4、完整代码1、背景介绍简单的说,就是在Excel中有一列h=会有重复

Python结合Flask框架构建一个简易的远程控制系统

《Python结合Flask框架构建一个简易的远程控制系统》这篇文章主要为大家详细介绍了如何使用Python与Flask框架构建一个简易的远程控制系统,能够远程执行操作命令(如关机、重启、锁屏等),还... 目录1.概述2.功能使用系统命令执行实时屏幕监控3. BUG修复过程1. Authorization