1.4.3 Capital Asset Pricing Model

2023-11-30 17:10
文章标签 1.4 model asset pricing capital

本文主要是介绍1.4.3 Capital Asset Pricing Model,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Relative Theory and Capital Asset Pricing Model
Capital market theory
Each investor’s portfolio is just a combination of risky assets and risk-free asset, with the proportional allocation between them being a function of the individual investor’s risk appetite.
Capital asset pricing model
Sharp broke down the risk of an individual asset into specific risk and systematic risk. Investors should receive no compensation for taking on the specific.


1. Assumptions of CAPM

  • Investors are expected to make decisions solely in terms of expected values and standard deviations of the returns on their portfolios.
  • Investor plan for the same single holding period.
  • Allocations can be made in an investment of any partial amount(infinitely divisible).
  • Including no transaction cost and no tax, or other frictions.
  • Short sale is allowed unlimitedly.
  • All participants can borrow and lend at a common risk-free rate.
  • Investor have homogeneous expectations or beliefs.
  • Any individual investor’s allocation decision cannot change the market prices(price taker).
  • All assets, including human capital, are tradable.

2. Systematic risk & Unsystematic risk

2.1 Systematic risk

The risk affects the entire market or economy, which cannot be avoided and is inherent in the overall market.

  • Caused by macro factors: interest rates, GDP growth, supply shocks.
  • Also named non-diversifiable risk or market risk,

Investor would be only rewarded for bearing systematic risk.

2.2 Unsystematic risk

The risk that can be reduced or eliminated by holding well-diversified portfolios.

  • Also named firm-specific risk or idiosyncratic risk.

Investor would not be rewarded for bearing unsystematic risk as it could be eliminated through diversification.

As more diversification is made within the portfolio, systematic risk would not change while unsystematic risk would decrease.

2.3 Measurement of systematic risk

Systematic risk can be measured by Beta( β \beta β) of the asset, which represents how sensitive an asset’s return is to the market as a whole.

From an investor’s perspective, β \beta β represents the portion of an asset’s total risk that cannot be diversified away and for which investors will expect compensation.
β i = C o v ( R i , R m ) σ m k t 2 = ρ i , m σ i σ m σ m 2 = ρ i , m σ i σ m \beta_i=\frac{Cov(R_i,R_m)}{\sigma^2_{mkt}} = \frac{\rho_{i,m}\sigma_i\sigma_m}{\sigma^2_m}=\rho_{i,m}\frac{\sigma_i}{\sigma_m} βi=σmkt2Cov(Ri,Rm)=σm2ρi,mσiσm=ρi,mσmσi

β \beta β can take on positive or negative values, depending on how an asset’s returns relate to those of the market portfolio.

  • A risk-free asset will have a beta of zero, because its returns are completely uncorrelated to the returns on the market portfolio.
  • The market portfolio has a beta of 1, because it is perfectly correlated with itself and has the same variance.
    β m k t = C o v ( R i , R m ) σ m k t 2 = σ m k t 2 σ m k t 2 = 1 \beta_{mkt}=\frac{Cov(R_i,R_m)}{\sigma^2_{mkt}} = \frac{\sigma_{mkt}^2}{\sigma_{mkt}^2}=1 βmkt=σmkt2Cov(Ri,Rm)=σmkt2σmkt2=1

3. Capital asset pricing model(CAPM)

E ( R i ) = R f + β i [ E ( R m ) − R f ) ] E(R_i)= R_f+\beta_i[E(R_m)-R_f)] E(Ri)=Rf+βi[E(Rm)Rf)]

  • E ( R i ) E(R_i) E(Ri): expected return on risky asset i i i,
  • E ( R m ) − R f E(R_m)-R_f E(Rm)Rf: market portfolio risk premium.
  • β i \beta_i βi: systematical risk of asset i i i.
  • β i [ E ( R m ) − R f ) ] \beta_i[E(R_m)-R_f)] βi[E(Rm)Rf)]: beta-adjusted risk premium on risky-asset i i i. expected return premium above the risk-free rate(as required by investors).

Rewriting the CAPM in terms of σ i \sigma_i σi, ρ i , m \rho_{i,m} ρi,m, σ m \sigma_m σm gives:
E ( R i ) = R f + σ i ρ i , m [ E ( R m ) − R f σ m ] E(R_i)= R_f+\sigma_i\rho_{i,m}[\frac{E(R_m)-R_f}{\sigma_m}] E(Ri)=Rf+σiρi,m[σmE(Rm)Rf]

This equation shows that excess expected return is the product of the systematic component of risk (i.e., σ i \sigma_i σi, ρ i , m \rho_{i,m} ρi,m) and the unit price of risk (i.e., [ E ( R m ) − R f σ m ] [\frac{E(R_m)-R_f}{\sigma_m}] [σmE(Rm)Rf]).


4. Security Market Line(SML)

In a world where the market is in equilibrium and is expected to remain in equilibrium, no investor can achieve an abnormal return.(i.e., an expected return greater that return predicted by the CAPM risk-return relationship.)

All securities will lie on the Security Market Line.

In the real world, stocks and portfolios may yield a return in excess of ,or below, the return with fair compensation for risk exposure.

A graphical representation of the CAPM with beta on the x-axis and expected return on the y-axis. Intercept is R f R_f Rf, slope is the market risk premium ( R m − R f ) (R_m-R_f) (RmRf).
请添加图片描述

  • Any asset that are properly priced plots on SML( A ).
  • Any asset that are overpriced plots below SML( B ).
  • Any asset that are underpriced plots above SML( C ).
    在这里插入图片描述

Security Market Line Application

  • CAPM theory asserts that investors would increase their allocations to asset C, driving up its price and decreasing its expected return.
  • Similarly, investors would decrease their allocaion to asset B, driving down its price and increasing its expected return.
  • The reallocation by investors would continue until both assets fell on the capital market line. (meaning that the market has reached equilibrium).

CML vs. SML

CMLSML
DefinitionAll efficient portfoliosAll properly priced assets or portfolios
X-axisTotal risk (σ )Systematic risk (β)
SlopeMarket portfolio’s Sharpe ratioMarket risk premium
ApplicationUsed for asset allocationUsed for security selection

这篇关于1.4.3 Capital Asset Pricing Model的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/437844

相关文章

MVC(Model-View-Controller)和MVVM(Model-View-ViewModel)

1、MVC MVC(Model-View-Controller) 是一种常用的架构模式,用于分离应用程序的逻辑、数据和展示。它通过三个核心组件(模型、视图和控制器)将应用程序的业务逻辑与用户界面隔离,促进代码的可维护性、可扩展性和模块化。在 MVC 模式中,各组件可以与多种设计模式结合使用,以增强灵活性和可维护性。以下是 MVC 各组件与常见设计模式的关系和作用: 1. Model(模型)

diffusion model 合集

diffusion model 整理 DDPM: 前向一步到位,从数据集里的图片加噪声,根据随机到的 t t t 决定混合的比例,反向要慢慢迭代,DDPM是用了1000步迭代。模型的输入是带噪声图和 t,t 先生成embedding后,用通道和的方式加到每一层中间去: 训练过程是对每个样本分配一个随机的t,采样一个高斯噪声 ϵ \epsilon ϵ,然后根据 t 对图片和噪声进行混合,将加噪

Segment Anything Model(SAM)中的Adapter是什么?

在META团队发布的Segment Anything Model (SAM) 中,Adapter 是一种用于提升模型在特定任务或领域上的性能的机制。具体来说,SAM 是一个通用的分割模型,能够处理多种不同类型的图像分割任务,而 Adapter 的引入是为了更好地让模型适应不同的任务需求。 Adapter 的主要功能是: 模块化设计:Adapter 是一种小规模的、可插拔的网络模块,可以在不改

Vue学习:v-model绑定文本框、单选按钮、下拉菜单、复选框等

v-model指令可以在组件上使用以实现双向绑定,之前学习过v-model绑定文本框和下拉菜单,今天把表单的几个控件单选按钮radio、复选框checkbox、多行文本框textarea都试着绑定了一下。 一、单行文本框和多行文本框 <p>1.单行文本框</p>用户名:<input type="text" v-model="inputMessage"><p>您的用户名是:{{inputMe

CUICatalog: Invalid asset name supplied: (null), or invalid scale factor: 2.000000错误解决方案

[[UIImage imageNamed:@""] 当后面的字符串为空时,会出现题目中的错误 if (imagstr != nil) {         cell.imageView.image =[UIImage imageNamed:imagstr];     }

USACO Section 1.4 Packing Rectangles

题意: 已知4个矩形的l和w  矩形可以旋转和平移  用一块最小面积的新的矩形覆盖4个矩形 求最小的面积  以及新矩形的l和w 思路: 题目已经给出6种摆放方式  按它的方式摆即可 我们要枚举4个矩形是否旋转(只转90度)过  然后枚举每种摆放方式中矩形的编号 代码中的枚举方法是二进制枚举旋转  全排列枚举编号 最后计算所有情况中的答案 第6种摆放方式比较难想  大致思路就是

Java memory model(JMM)的理解

总结:JMM 是一种规范,目的是解决由于多线程通过共享内存进行通信时,存在的本地内存数据不一致、编译器会对代码指令重排序、处理器会对代码乱序执行等带来的问题。目的是保证并发编程场景中的原子性、可见性、有序性。 总结的很精辟! 感谢Hollis总结

使用RMMapper将.plist文件转成model模型

在项目开发中, 有时我们会用到.plist, 这个时候可能会使用这个plist,拿出来用model去绑定它来对应项目MVC, 我们可以引入RMMapper,废话不多说,看代码先。 在git clone RMMapper,操作不多说了哈, 不会的可以私信我,会详细给你支招。 一、创建一个类TaskPlist基于NSObject, 代码如下: .h #import <Foundation

在Yolov8中model.export后self.export=false问题(记录)

遇到一个问题是自己创建了新的Detect检测头,但是在导出模型时,想要修改输出格式,在yolo中可以通过if self.export:来修改网络的返回值格式 当使用model.export()导出时,理论上会自动将export设置为True 但是在实际中发现export=false,于是通过调试发现在ultralytics/engine/exporter.py中 for m in model

unity3d中asset store couldn't decompress the package

unity3d应用商店无法解压资源包。 此问题是因为资源包路径中包含中文。 查了一下,我的用户名就是中文。 可我还不喜欢迁就,不喜欢下载好资源包再挪出来。 于是打算彻底把账户名以及user文件夹下的名字改一下。 引用 step1:新建一个临时账号超级管理员TempUser,; step2:登陆TempUser,修改目标用户名称, step3:修改目标用户user下文件夹名称;