K近邻算法经典案例实现之海伦约会

2023-11-30 11:40

本文主要是介绍K近邻算法经典案例实现之海伦约会,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

  上文实现了简单的K近邻算法,本文来介绍下完整的K近邻算法,将实际需求与算法进行结合,做个小小的demo,毕竟'talk is cheap,show me the code.'。

K近邻算法的一般流程如下:

  1. 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据。一般来讲,数据放在txt文本文件中,按照一定的格式进行存储,便于解析及处理。
  2. 准备数据:使用Python解析、预处理数据。
  3. 分析数据:可以使用很多方法对数据进行分析,例如使用Matplotlib将数据可视化。
  4. 测试算法:计算错误率。
  5. 使用算法:错误率在可接受范围内,就可以运行k-近邻算法进行分类

案例需求分析

海伦女士一直使用在线约会网站寻找适合自己的约会对象。尽管约会网站会推荐不同的任选,但她并不是喜欢每一个人。经过一番总结,她发现自己交往过的人可以进行如下分类:

  1. 不喜欢的人
  2. 魅力一般的人
  3. 极具魅力的人

海伦收集约会数据已经有了一段时间,她把这些数据存放在文本文件datingTestSet.txt中,每个样本数据占据一行,总共有1000行。datingTestSet.txt数据下载: 数据集下载

海伦收集的样本数据主要包含以下3种特征:

  1. 每年获得的飞行常客里程数

  2. 玩视频游戏所消耗时间百分比

  3. 每周消费的冰淇淋公升数

代码实现

数据解析以及可视化
  因为原始数据往往不方便进行直接计算,因此需要对文件进行简单处理成我们需要的数据。可视化是为了方便直接观察数据的规律。

代码如下:

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines# 数据预处理
def fileRead(fileName):#打开文件fr = open(fileName)#读取全部内容arraryOfLines = fr.readlines()#求行数numberOfLines = len(arraryOfLines)#生成numberOfLines行,3列的矩阵,方便后面存放数据returnMat = np.zeros((numberOfLines, 3))#用于存放类别classLabelVector = []#设置索引,用于循环index = 0#开始循环读取for line in arraryOfLines:#去除掉文件中的多余字符line = line.strip()#用空格对内容进行分割listFormLine = line.split('\t')#赋值returnMat[index, :] = listFormLine[0:3]#对类别数组进行赋值if listFormLine[-1] == 'didntLike':classLabelVector.append(1)if listFormLine[-1] == 'smallDoses':classLabelVector.append(2)if listFormLine[-1] == 'largeDoses':classLabelVector.append(3)index += 1return returnMat, classLabelVector# 数据展示
def showData(datingDataMat, datingLabels):fig, axs = plt.subplots(nrows=2, ncols=2, sharex=False, sharey=False, figsize=(13, 8))LabelsColors = []for i in datingLabels:if i == 1:LabelsColors.append('black')if i == 2:LabelsColors.append('orange')if i == 3:LabelsColors.append('red')axs[0][0].scatter(x=datingDataMat[:, 0], y=datingDataMat[:, 1], color=LabelsColors, s=15, alpha=.5)axs0_title_text = axs[0][0].set_title('flight_play')axs0_xlabel_text = axs[0][0].set_xlabel('flight_time')axs0_ylabel_text = axs[0][0].set_ylabel('play_time')plt.setp(axs0_title_text, size=9, weight='bold', color='red')plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')axs[0][1].scatter(x=datingDataMat[:, 0], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)# 设置标题,x轴label,y轴labelaxs1_title_text = axs[0][1].set_title('flight_eat')axs1_xlabel_text = axs[0][1].set_xlabel('flight')axs1_ylabel_text = axs[0][1].set_ylabel('eat')plt.setp(axs1_title_text, size=9, weight='bold', color='red')plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')# 画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5axs[1][0].scatter(x=datingDataMat[:, 1], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)# 设置标题,x轴label,y轴labelaxs2_title_text = axs[1][0].set_title('play_eat')axs2_xlabel_text = axs[1][0].set_xlabel('play_time')axs2_ylabel_text = axs[1][0].set_ylabel('eat_weight')plt.setp(axs2_title_text, size=9, weight='bold', color='red')plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')# 设置图例didntLike = mlines.Line2D([], [], color='black', marker='.',markersize=6, label='didntLike')smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='smallDoses')largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='largeDoses')# 添加图例axs[0][0].legend(handles=[didntLike, smallDoses, largeDoses])axs[0][1].legend(handles=[didntLike, smallDoses, largeDoses])axs[1][0].legend(handles=[didntLike, smallDoses, largeDoses])# 显示图片plt.show()fileName = 'datingTestSet.txt'
datingDataMat, datingLabels = fileRead(fileName)
print("datingLabels is",datingLabels)
print("datingDataMat is",datingDataMat)
showData(datingDataMat,datingLabels)

效果展示

类别矩阵以及初始数据矩阵

在这里插入图片描述

散点图

在这里插入图片描述

数据归一化

数据为什么要归一化?

  通过上面的图片我们不难发现一个问题,飞行里程数的数据一般都是成百上千,但是吃冰淇淋的总量也就几升而已,这显然会影响欧式距离公式的计算结果,
就如我们小时候画直角坐标系的时候,如果x轴y轴数值差距过大,我们往往会为x,y轴设立不同的比例,以此来让数据更加规整,那是显示层面的,同理
为了让欧式距离公式计算更加精准,我们常用的方法一般为数值归一化,将取值范围取到0到1或者-1到1之间。

归一化公式如下:
n e w V a l u e s = ( o l d V a l u e − m i n ) / ( m a x − m i n ) newValues =(oldValue - min)/(max - min) newValues=(oldValuemin)/(maxmin)
代码实现:

def autoNorm(dataSet):#获得数据的最小值minVals = dataSet.min(0)maxVals = dataSet.max(0)#最大值和最小值的范围ranges = maxVals - minVals#shape(dataSet)返回dataSet的矩阵行列数normDataSet = np.zeros(np.shape(dataSet))#返回dataSet的行数m = dataSet.shape[0]#原始值减去最小值normDataSet = dataSet - np.tile(minVals, (m, 1))#除以最大和最小值的差,得到归一化数据normDataSet = normDataSet / np.tile(ranges, (m, 1))#返回归一化数据结果,数据范围,最小值return normDataSet, ranges, minVals

测试算法性能:验证分类器

  机器学习算法的一个重要部分就是对算法进行评估,在监督学习中,通常我们将90%的样本作为训练样本来训练分类器,10%的样本用来测试分类器的准确率。
算法上一期已经实现过,这里就不多赘诉了,直接上完整代码。
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import operator# 数据预处理
def fileRead(fileName):# 打开文件fr = open(fileName)# 读取全部内容arraryOfLines = fr.readlines()# 求行数numberOfLines = len(arraryOfLines)# 生成numberOfLines行,3列的矩阵,方便后面存放数据returnMat = np.zeros((numberOfLines, 3))# 用于存放类别classLabelVector = []# 设置索引,用于循环index = 0# 开始循环读取for line in arraryOfLines:# 去除掉文件中的多余字符line = line.strip()# 用空格对内容进行分割listFormLine = line.split('\t')# 赋值returnMat[index, :] = listFormLine[0:3]# 对类别数组进行赋值if listFormLine[-1] == 'didntLike':classLabelVector.append(1)if listFormLine[-1] == 'smallDoses':classLabelVector.append(2)if listFormLine[-1] == 'largeDoses':classLabelVector.append(3)index += 1return returnMat, classLabelVector# 数据展示
def showData(datingDataMat, datingLabels):fig, axs = plt.subplots(nrows=2, ncols=2, sharex=False, sharey=False, figsize=(13, 8))LabelsColors = []for i in datingLabels:if i == 1:LabelsColors.append('black')if i == 2:LabelsColors.append('orange')if i == 3:LabelsColors.append('red')axs[0][0].scatter(x=datingDataMat[:, 0], y=datingDataMat[:, 1], color=LabelsColors, s=15, alpha=.5)axs0_title_text = axs[0][0].set_title('flight_play')axs0_xlabel_text = axs[0][0].set_xlabel('flight_time')axs0_ylabel_text = axs[0][0].set_ylabel('play_time')plt.setp(axs0_title_text, size=9, weight='bold', color='red')plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')axs[0][1].scatter(x=datingDataMat[:, 0], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)# 设置标题,x轴label,y轴labelaxs1_title_text = axs[0][1].set_title('flight_eat')axs1_xlabel_text = axs[0][1].set_xlabel('flight')axs1_ylabel_text = axs[0][1].set_ylabel('eat')plt.setp(axs1_title_text, size=9, weight='bold', color='red')plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')# 画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5axs[1][0].scatter(x=datingDataMat[:, 1], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)# 设置标题,x轴label,y轴labelaxs2_title_text = axs[1][0].set_title('play_eat')axs2_xlabel_text = axs[1][0].set_xlabel('play_time')axs2_ylabel_text = axs[1][0].set_ylabel('eat_weight')plt.setp(axs2_title_text, size=9, weight='bold', color='red')plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')# 设置图例didntLike = mlines.Line2D([], [], color='black', marker='.',markersize=6, label='didntLike')smallDoses = mlines.Line2D([], [], color='orange', marker='.',markersize=6, label='smallDoses')largeDoses = mlines.Line2D([], [], color='red', marker='.',markersize=6, label='largeDoses')# 添加图例axs[0][0].legend(handles=[didntLike, smallDoses, largeDoses])axs[0][1].legend(handles=[didntLike, smallDoses, largeDoses])axs[1][0].legend(handles=[didntLike, smallDoses, largeDoses])# 显示图片plt.show()# 数据归一化
def autoNorm(dataSet):minVals = dataSet.min(0)maxVals = dataSet.max(0)ranges = maxVals - minValsnormalDataSet = np.zeros(np.shape(dataSet))m = dataSet.shape[0]normalDataSet = dataSet - np.tile(minVals, (m, 1))normalDataSet = normalDataSet / np.tile(ranges, (m, 1))return normalDataSet, ranges, minVals#分类器
def classify(input, dataSet, labels, k):# numpy中的shape方法用于计算形状 eg: dataSet: 4*2# print(dataSet.shape)dataSetSize = dataSet.shape[0]# numpy中的tile方法,用于对矩阵进行填充# 将inX矩阵填充至与dataSet矩阵相同规模,后相减diffMat = np.tile(input, (dataSetSize, 1)) - dataSet# 平方sqDiffMat = diffMat ** 2# 求和sqDistance = sqDiffMat.sum(axis=1)# 开方distance = sqDistance ** 0.5# argsort()方法进行直接排序sortDist = distance.argsort()classCount = {}for i in range(k):# 取出前k个元素的类别voteIlabel = labels[sortDist[i]]# dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。# 计算类别次数classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1# 排序sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)# 返回次数最多的类别,即所要分类的类别return sortedClassCount[0][0]fileName = 'datingTestSet.txt'
datingDataMat, datingLabels = fileRead(fileName)
showData(datingDataMat, datingLabels)
percent = 0.10
normalDataMat, ranges, minvals = autoNorm(dataSet=datingDataMat)
m = normalDataMat.shape[0]
numTestVecs = int(m*percent)
errorCount = 0.0
for i in range(numTestVecs):classifyResult = classify(normalDataMat[i,:],normalDataMat[numTestVecs:m,:],datingLabels[numTestVecs:m],4)print("分类结果:%d,真实类别:%d" % (classifyResult,datingLabels[i]))if(classifyResult!=datingLabels[i]):errorCount += 1.0
print("错误率:%f%%" %(errorCount/float(numTestVecs)*100))

运行截图
在这里插入图片描述

这篇关于K近邻算法经典案例实现之海伦约会的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/436897

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert