R语言gWQS包在加权分位数和回归模型的应用

2023-11-30 09:45

本文主要是介绍R语言gWQS包在加权分位数和回归模型的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在流行病学研究中,相较于单一因素的暴露,多因素同时暴露的情况更为常见。传统模型在评价多因素联合暴露时存在数据维度高、多重共线性等问题. WQS 回归模型的基本原理是通过分位数间距及加权的方法,将多种研究因素的效应综合成为一个指数,再进行回归分析。不同因素赋予的权重反映了其对结局的影响程度。使用该模型时应满足各研究因素
对结局影响的方向相同这一基本假设.
在这里插入图片描述
模型的一般形式为:
在这里插入图片描述
式中:c 表示污染物种类;β 0 表示截距;β 1 表示回归系数,用于限制联合效应对结局影响的方向;w i 表示第 i 种因素的未知权重,取值范围[0,1],且 ∑wi = 1,q i 表示对因素 i 进行 q 分位(如三、四分位等);
在这里插入图片描述
上公式表示c 种研究因素的综合权重指数;z 为协变量矩阵,φ为该矩阵的回归系数;g ( )为连接函数,μ 为均数。

在这里插入图片描述
下面咱们来进行演示一下,先导入R包和数据,数据使用的是gWQS自带的数据

library(gWQS)
library(ggplot2)
library(reshape2)
data(wqs_data)

在这里插入图片描述
数据挺大的,上图只是数据的一部分,这些数据反映了参与NHANES研究(2001-2002)的受试者中34种多氯联苯暴露和25种邻苯二甲酸酯生物标志物的分布模拟的59种暴露浓度,概括来说就是一些指标的浓度,结局有连续变量和分类变量,还有性别作为协变量。
WQS 回归模型的思想就是把指标打包成一个指数,第一步先要确定咱们研究哪些指标,假设咱们研究的是前面34种指标

PCBs <- names(wqs_data)[1:34]
PCBs

在这里插入图片描述
然后就可以生成模型了, 通过 y ~ wqs+sex 将 y 与 34种 PCBs 的联合效应,建立回归方程并调整性别(sex)。其中wqs 是固定参数(即:必须包含项), mix_name=mix 表示指定联合暴露污染物,data =wqs_data 表示输入的数据集为 wqs_data;q=10表示将联合效应进行10分位,在实际运用过程中研究者可设置不同的分位数;validation=0.6 表示随机抽取数据集中的 60% 作为验证集,余下的 40% 作为训练集;b表示 bootstrap 随机抽样次数,该参数至少为 100;b1_pos=TRUE 表示设定联合效应的权重为正 (若为
负则设置为 FALSE);b1_constr=FALSE 表示使用优化算法对权重进行估计时不进行限制(若进行限制则设置为 TURE);family="gaussian"表示采用高斯分布进行拟合,也可根据研究对象的数据类型采用二项分布、多项式或泊松分布等进行拟合;由于涉及 boot⁃strap 随机抽样过程,将随机种子数 (seed) 设置为2021。

results2i <-gwqs (y ~ wqs+sex, mix_name=PCBs, data=wqs_data,q=10, validation=0.6, b=100, b1_pos=TRUE,b1_constr=FALSE, family="gaussian", seed=2021)

在这里插入图片描述
解析结果,可以看到这个联合指数是和结局相关的

summary(results2i)

在这里插入图片描述
也可以使用gwqs解析函数,生成标准化表格

gwqs_summary_tab(results2i)

在这里插入图片描述
这样也可以查看系数和可信区间

summary(results2i)[["coefficients"]]
confint(results2i)

在这里插入图片描述
接下来咱们
咱们查看污染物权重构成比

gwqs_weights_tab(results2i)

在这里插入图片描述
这样也可以的

results2i$final_weights

可以进一步可视化,画个条形图,咱们可以看到,前4个指标对结局影响最大

gwqs_barplot(results2i)

在这里插入图片描述
咱们也可以把数据提取出来使用ggplot来话,这样更加美观

w_ord <- order(results2i$final_weights$mean_weight)
mean_weight <- results2i$final_weights$mean_weight[w_ord]mix_name <- factor(results2i$final_weights$mix_name[w_ord],levels = results2i$final_weights$mix_name[w_ord])
dataplot <- data.frame(mean_weight, mix_name)ggplot(dataplot, aes(x = mix_name, y = mean_weight, fill = mix_name)) +geom_bar(stat = "identity", color = "black") + theme_bw() +theme(axis.ticks = element_blank(),axis.title = element_blank(),axis.text.x = element_text(color='black'),legend.position = "none") + coord_flip()

在这里插入图片描述
画个相关曲线图,可以看到是正相关

gwqs_scatterplot(results2i)

在这里插入图片描述
绘制残差图,可以检查它们是否随机分布在0附近或是否有趋势

gwqs_fitted_vs_resid(results2i)

在这里插入图片描述
咱们还可以进行箱线图绘制,但是绘制箱线图需要使用gwqsrh函数生成下结果

results3i <-gwqsrh (y ~ wqs+sex, mix_name=PCBs, data=wqs_data,q=10, validation=0.6, b=5, b1_pos=TRUE,seed=2021,b1_constr=FALSE, family="gaussian", future.seed=TRUE)

生成结果后绘图

gWQS::gwqsrh_boxplot(results3i)

在这里插入图片描述
也可以使用ggplot提取数据绘图

wboxplot <- melt(results3i$wmat, varnames = c("rh", "mix_name"))wboxplot$mix_name <- factor(wboxplot$mix_name, levels = results3i$final_weights$mix_name)ggplot(wboxplot, aes(x = mix_name,  y = value,fill=mix_name))+geom_boxplot()+theme_bw()+theme(axis.text.x = element_text(angle = 45,  hjust = 1)) 

在这里插入图片描述
还可以调整一下

ggplot(wboxplot, aes(x = mix_name,  y = value,fill=mix_name))+geom_boxplot()+theme_bw()+theme(axis.text.x = element_text(angle = 45,  hjust = 1))+ylab("Weight (%)") + stat_summary(fun.y = mean, geom = "point", shape = 18, size = 3) + geom_jitter(alpha = 0.3)

在这里插入图片描述
如果结局是二分类指标,咱们还可以绘制roc曲线,咱们从新生成一个结果

results4i <-gwqs (ybin ~ wqs+sex, mix_name=PCBs, data=wqs_data,q=10, validation=0.6, b=100, b1_pos=TRUE,b1_constr=FALSE, family="binomial", seed=2021)gwqs_ROC(results4i,wqs_data)

在这里插入图片描述
参考文献

  1. gwqs说明文件
  2. Carrico C , Gennings C , Wheeler D C ,et al.Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting[J].Journal of Agricultural, Biological, and Environmental Statistics, 2014.DOI:10.1007/s13253-014-0180-3.
  3. 李珽君,黄俊理,陈海建,莫春宝.加权分位数和回归模型的应用及R软件实现[J].预防医学,2023,35(3):275-276.DOI:10.19485/j.cnki.issn2096-5087.2023.03.021.
  4. https://blog.csdn.net/qq_42458954/article/details/120157806
  5. https://blog.csdn.net/weixin_42812146/article/details/126192945

这篇关于R语言gWQS包在加权分位数和回归模型的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/436567

相关文章

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

C语言中的数据类型强制转换

《C语言中的数据类型强制转换》:本文主要介绍C语言中的数据类型强制转换方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C语言数据类型强制转换自动转换强制转换类型总结C语言数据类型强制转换强制类型转换:是通过类型转换运算来实现的,主要的数据类型转换分为自动转换

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

C语言实现两个变量值交换的三种方式

《C语言实现两个变量值交换的三种方式》两个变量值的交换是编程中最常见的问题之一,以下将介绍三种变量的交换方式,其中第一种方式是最常用也是最实用的,后两种方式一般只在特殊限制下使用,需要的朋友可以参考下... 目录1.使用临时变量(推荐)2.相加和相减的方式(值较大时可能丢失数据)3.按位异或运算1.使用临时

使用C语言实现交换整数的奇数位和偶数位

《使用C语言实现交换整数的奇数位和偶数位》在C语言中,要交换一个整数的二进制位中的奇数位和偶数位,重点需要理解位操作,当我们谈论二进制位的奇数位和偶数位时,我们是指从右到左数的位置,本文给大家介绍了使... 目录一、问题描述二、解决思路三、函数实现四、宏实现五、总结一、问题描述使用C语言代码实现:将一个整

Java中&和&&以及|和||的区别、应用场景和代码示例

《Java中&和&&以及|和||的区别、应用场景和代码示例》:本文主要介绍Java中的逻辑运算符&、&&、|和||的区别,包括它们在布尔和整数类型上的应用,文中通过代码介绍的非常详细,需要的朋友可... 目录前言1. & 和 &&代码示例2. | 和 ||代码示例3. 为什么要使用 & 和 | 而不是总是使