随机游走问题的神奇应用(一)

2023-11-30 05:32

本文主要是介绍随机游走问题的神奇应用(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

泊松方程的随机游走求解

    • 一.问题的提出
    • 二.问题的求解
    • 三.代码求解

可以用monteCarlo方法构建一个随机游走过程来求解偏微分方程。

一.问题的提出

​ 求解二维泊松方程的第一边值问题如下:
∂ 2 u ( P ) ∂ x + ∂ 2 u ( P ) ∂ y 2 = q ( P ) P ( x , y ) ∈ D \frac{\partial^2 u(P)}{\partial x} + \frac{\partial^2 u(P)}{\partial y^2} = q(P)\quad P(x,y) \in D\\ x2u(P)+y22u(P)=q(P)P(x,y)D
​ 边界条件为:
u ( Q ) = f ( Q ) Q ( x , y ) ∈ Γ = ∂ D u(Q) = f(Q)\quad Q(x,y)\in \Gamma = \partial D u(Q)=f(Q)Q(x,y)Γ=D

二.问题的求解

如下图所示如果我们要求在 P ( x ∗ , y ∗ ) P(x^*,y^*) P(x,y)处的值,设求解步长为 h h h。我们就将原来的方程差分化:
u ( x + h , y ) + u ( x − h , y ) − 2 u ( x , y ) h 2 + u ( x , y + h ) + u ( x , y − h ) − 2 u ( x , y ) h 2 = q ( x , y ) \frac{u(x+h,y)+u(x-h,y) -2u(x,y)}{h^2}+\frac{u(x,y+h)+u(x,y-h) -2u(x,y)}{h^2} = q(x,y) h2u(x+h,y)+u(xh,y)2u(x,y)+h2u(x,y+h)+u(x,yh)2u(x,y)=q(x,y)
可以化成如下差分形式:
u = − h 2 4 q + ∑ i = 1 4 u 1 i u = -\frac{h^2}{4}q+\sum_{i= 1}^4u_{1i} u=4h2q+i=14u1i
其中 P 1 i P_{1i} P1i的含义如下图所示:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FS0WKT5q-1608990753380)(D:\文件\2020 09 19\美赛软件\h图.png)]

我们假设方程的定义区域为下图,黑点为边界 Γ \Gamma Γ上的点,白点为内部 D D D上的点。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-dR9Iys64-1608990753383)(D:\文件\2020 09 19\美赛软件\截图.png)]

我们定义一个从 P ( x ∗ , y ∗ ) P(x^*,y^*) P(x,y)开始的游走路线:
ρ P : P → P 1 → P 2 → P 3 . . . → P k − 1 → Q ∈ Γ \rho_P :P\rightarrow P_1 \rightarrow P_2 \rightarrow P_3...\rightarrow P_{k-1}\rightarrow Q\in \Gamma ρP:PP1P2P3...Pk1QΓ
其中的点 P i P_i Pi是由点 P i − 1 P_{i-1} Pi1进过以下规则 f f f得到的:
f : P i − 1 → P i f:P_{i-1} \rightarrow P_i f:Pi1Pi
f f f:我们产生一个随机数 r ∈ [ 0 , 1 ] r\in[0,1] r[0,1]:

r r r P i − 1 P_{i-1} Pi1 P i P_i Pi
[ 0 , 0.25 ] [0,0.25] [0,0.25] P i − 1 ( x ∗ , y ∗ ) P_{i-1}(x^*,y^*) Pi1(x,y) P i ( x ∗ + h , y ∗ ) P_i(x^*+h,y^*) Pi(x+h,y)
[ 0.25 , 0.5 ] [0.25,0.5] [0.25,0.5] P i − 1 ( x ∗ , y ∗ ) P_{i-1}(x^*,y^*) Pi1(x,y) P i ( x ∗ , y ∗ + h ) P_i(x^*,y^*+h) Pi(x,y+h)
[ 0.5 , 0.75 ] [0.5,0.75] [0.5,0.75] P i − 1 ( x ∗ , y ∗ ) P_{i-1}(x^*,y^*) Pi1(x,y) P i ( x ∗ − h , y ∗ ) P_i(x^*-h,y^*) Pi(xh,y)
[ 0.75 , 1 ] [0.75,1] [0.75,1] P i − 1 ( x ∗ , y ∗ ) P_{i-1}(x^*,y^*) Pi1(x,y) P i ( x ∗ , y ∗ − h ) P_i(x^*,y^*-h) Pi(x,yh)

表示 P i − 1 P_{i-1} Pi1分别有 1 4 \frac{1}{4} 41的概率到 P 11 , P 12 , P 13 , P 14 P_{11},P_{12},P_{13},P_{14} P11,P12,P13,P14,即有相同的概率前后左右随机移动,到终点为止。

那么在这样的规则下会生成一条路线 ρ P \rho_P ρP。此时我们建立其以下的映射关系:
g : ρ p → u ( P ) g:\rho_p \rightarrow u(P) g:ρpu(P)
即是从 P P P点出发的一条路线 ρ P \rho_P ρP到该点的数值解 u ( P ) u(P) u(P)的一个映射关系 g g g

现在我们直接给出这个关系:
g : u ( P ) = − h 2 4 ∑ i = 1 k − 1 q ( P i ) + f ( Q ) g:u(P) = -\frac{h^2}{4}\sum_{i = 1}^{k-1}q(P_i)+f(Q) g:u(P)=4h2i=1k1q(Pi)+f(Q)
那么我们从这一次随机游走 ρ P \rho_P ρP映射出了一次的 u ( P ) u(P) u(P)。这个结果肯定是不精确的,我们如果设每次的结果都是一次随机变量 ζ P = g ( ρ P ) \zeta_P = g(\rho_P) ζP=g(ρP),那么可以证明的是 E ζ P = u ( P ) E\zeta_P = u(P) EζP=u(P),具体证明过程忽略。我们利用这个结论可以由大数定律:
u ( P ) ∼ 1 N ∑ i = 1 N ζ P i u(P) \sim\frac{1}{N}\sum_{i =1}^N\zeta_{Pi} u(P)N1i=1NζPi
即通过多次模拟随机游走的过程求其均值用来表示当前的解 u ( P ) u(P) u(P)

三.代码求解

假设我们要求解的是以下方程:
∂ 2 u ∂ x + ∂ 2 u ∂ y 2 = 1 \frac{\partial^2 u}{\partial x} + \frac{\partial^2 u}{\partial y^2} =1 \\ x2u+y22u=1
边界 Γ : x 2 + y 2 = 2 \Gamma:x^2+y^2 =2 Γ:x2+y2=2。在此边界上:
u ( Γ ) = 1 2 u(\Gamma) = \frac{1}{2} u(Γ)=21
现求 u ( 0 , 1 ) u(0,1) u(0,1)的值。

理论上该方程的解析解为 u ( x , y ) = x 2 + y 2 4 u(x,y) = \frac{x^2+y^2}{4} u(x,y)=4x2+y2,因此 u ( 0 , 1 ) = 1 4 u(0,1) = \frac{1}{4} u(0,1)=41。在这里,我们给出求解该方程的函数并且显示当前的随机游走过程:

function [uFinal,zeta] = possionRandom(xPoint,yPoint,h,N)
%UNTITLED 求 Deltea u = 1;在u(x^2+y^2 = 2) = 0.5边界条件
%   [xPoint,yPoint]表示该点坐标,h仿真步长,N仿真次数
q = @(x,y)1;  % 函数
f = @(x,y)(0.5);
u = zeros(1,N);
for i = 1:NsumV = 0;xValue = xPoint;yValue = yPoint;P = [xValue ,yValue];%以下是游走过程while(1)if (xValue)^2+(yValue)^2>=2P = [P;xValue,yValue];break;endrandNumber = randsrc(1,1,[[0 1 2 3];[0.25 0.25 0.25 0.25]]);switch (randNumber)case 0xValue = xValue + h;yValue = yValue;case 1xValue = xValue ;yValue = yValue + h;case 2xValue = xValue - h ;yValue = yValue ;    case 3xValue = xValue;yValue = yValue - h;endP = [P;xValue,yValue];end%以下是画图过程if i == 1subplot(121);grid on;plot(P(:,1),P(:,2),'b.-');title('第一次轨迹');end%以下是计算过程[m,n] = size(P);for j = 1:m-1if isnan(q(P(j,1),P(j,2))) == 1q(P(j,1),P(j,2)) = q(h,h);endsumV = sumV + q(P(j,1),P(j,2));endzeta(i) = -h^2/4*sumV + f(P(m,1),P(m,2));u(i) = sum(zeta(1:i))/i;
end
subplot(122);
grid on ;
uFinal = u(N);
plot(1:N,u,'r');
xlabel('次数');
ylabel('进化曲线');
title('收敛过程');
end

在命令行求解 u ( 0 , 1 ) u(0,1) u(0,1)的值如下,设置步长为 h = 0.01 h = 0.01 h=0.01,仿真次数 N = 100 N = 100 N=100

>> [uFinal,zeta] = possionRandom(0,1,0.01,100);

得到如下图形:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-ZsOWq3gq-1608990753386)(D:\文件\2020 09 19\美赛软件\随机游走1.png)]

最终结果为 0.2353 0.2353 0.2353。可以发现还是有点误差的。

关键是这玩意如果步长设置的比较小的话就会一直游走。所以运行的时间就会比较长。

这篇关于随机游走问题的神奇应用(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/435809

相关文章

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Kafka拦截器的神奇操作方法

《Kafka拦截器的神奇操作方法》Kafka拦截器是一种强大的机制,用于在消息发送和接收过程中插入自定义逻辑,它们可以用于消息定制、日志记录、监控、业务逻辑集成、性能统计和异常处理等,本文介绍Kafk... 目录前言拦截器的基本概念Kafka 拦截器的定义和基本原理:拦截器是 Kafka 消息传递的不可或缺

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言