【Python基础教程】python相关性热力图自动标记显著性

2023-11-30 03:20

本文主要是介绍【Python基础教程】python相关性热力图自动标记显著性,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【Python基础教程】python相关性热力图自动标记显著性

前段时间在写论文绘制相关性热力图时,需要标记显著性,而seaborn却没有这个功能。研究了一下,记录分享给有需要的同学。

实例演示----不显示显著性

# -*- encoding: utf-8 -*-
'''
@File    :   plot_r.py
@Time    :   2022/03/14 22:39:53
@Author  :   HMX 
@Version :   1.0
@Contact :   kzdhb8023@163.com
'''# here put the import lib
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import pearsonr
import matplotlib as mpldef cm2inch(x,y):return x/2.54,y/2.54size1 = 10.5
mpl.rcParams.update(
{
'text.usetex': False,
'font.family': 'stixgeneral',
'mathtext.fontset': 'stix',
"font.family":'serif',
"font.size": size1,
"font.serif": ['Times New Roman'],
}
)
fontdict = {'weight': 'bold','size':size1,'family':'SimHei'}fp = r'Z:\GJ\pearsonr\data.xlsx'
df = pd.read_excel(fp,sheet_name='Sheet1',header = 0)
df_coor=df.corr()
fig = plt.figure(figsize=(cm2inch(16,12)))
ax1 = plt.gca()#构造mask,去除重复数据显示
mask = np.zeros_like(df_coor)
mask[np.triu_indices_from(mask)] = True
mask2 = mask
mask = (np.flipud(mask)-1)*(-1)
mask = np.rot90(mask,k = -1)im1 = sns.heatmap(df_coor,annot=True,cmap="RdBu"
, mask=mask#构造mask,去除重复数据显示
,vmax=1,vmin=-1
, fmt='.2f',ax = ax1)ax1.tick_params(axis = 'both', length=0)
plt.savefig(r'Z:\GJ\pearsonr\fig\r_demo.png',dpi=600)
plt.show()

结果显示

在这里插入图片描述

实例演示----加入显著性的最终代码

主要的思路就是判断P值然后按等级进行打点。打点前需要依据mask进行判断,其次观察发现字体颜色是依据相关性的绝对是与0.5的关系进行一个判断。

# -*- encoding: utf-8 -*-
'''
@File    :   plot_r.py
@Time    :   2022/03/14 22:39:53
@Author  :   HMX 
@Version :   1.0
@Contact :   kzdhb8023@163.com
'''# here put the import lib
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import pearsonr
import matplotlib as mpldef cm2inch(x,y):return x/2.54,y/2.54size1 = 10.5
mpl.rcParams.update(
{
'text.usetex': False,
'font.family': 'stixgeneral',
'mathtext.fontset': 'stix',
"font.family":'serif',
"font.size": size1,
"font.serif": ['Times New Roman'],
}
)
fontdict = {'weight': 'bold','size':size1,'family':'SimHei'}fp = r'Z:\GJ\pearsonr\data.xlsx'
df = pd.read_excel(fp,sheet_name='Sheet1',header = 0)
df_coor=df.corr()
fig = plt.figure(figsize=(cm2inch(16,12)))
ax1 = plt.gca()#构造mask,去除重复数据显示
mask = np.zeros_like(df_coor)
mask[np.triu_indices_from(mask)] = True
mask2 = mask
mask = (np.flipud(mask)-1)*(-1)
mask = np.rot90(mask,k = -1)im1 = sns.heatmap(df_coor,annot=True,cmap="RdBu"
, mask=mask#构造mask,去除重复数据显示
,vmax=1,vmin=-1
, fmt='.2f',ax = ax1)ax1.tick_params(axis = 'both', length=0)#计算相关性显著性并显示
rlist = []
plist = []
for i in df.columns.values:for j in df.columns.values:r,p = pearsonr(df[i],df[j])rlist.append(r)plist.append(p)rarr = np.asarray(rlist).reshape(len(df.columns.values),len(df.columns.values))
parr = np.asarray(plist).reshape(len(df.columns.values),len(df.columns.values))
xlist = ax1.get_xticks()
ylist = ax1.get_yticks()widthx = 0
widthy = -0.15for m in ax1.get_xticks():for n in ax1.get_yticks():pv = (parr[int(m),int(n)])rv = (rarr[int(m),int(n)])if mask2[int(m),int(n)]<1.:if abs(rv) > 0.5:if  pv< 0.05 and pv>= 0.01:ax1.text(n+widthx,m+widthy,'*',ha = 'center',color = 'white')if  pv< 0.01 and pv>= 0.001:ax1.text(n+widthx,m+widthy,'**',ha = 'center',color = 'white')if  pv< 0.001:print([int(m),int(n)])ax1.text(n+widthx,m+widthy,'***',ha = 'center',color = 'white')else: if  pv< 0.05 and pv>= 0.01:ax1.text(n+widthx,m+widthy,'*',ha = 'center',color = 'k')elif  pv< 0.01 and pv>= 0.001:ax1.text(n+widthx,m+widthy,'**',ha = 'center',color = 'k')elif  pv< 0.001:ax1.text(n+widthx,m+widthy,'***',ha = 'center',color = 'k')
plt.savefig(r'Z:\GJ\pearsonr\fig\r_demo.png',dpi=600)
plt.show()

结果如下

在这里插入图片描述
热力图的其他设置请参考seaborn官网
今天的分享就到这里了,欢迎大家关注我的公众号【森气笔记】

这篇关于【Python基础教程】python相关性热力图自动标记显著性的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/435428

相关文章

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Python中多线程和多进程的基本用法详解

《Python中多线程和多进程的基本用法详解》这篇文章介绍了Python中多线程和多进程的相关知识,包括并发编程的优势,多线程和多进程的概念、适用场景、示例代码,线程池和进程池的使用,以及如何选择合适... 目录引言一、并发编程的主要优势二、python的多线程(Threading)1. 什么是多线程?2.

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (

Python重命名文件并移动到对应文件夹

《Python重命名文件并移动到对应文件夹》在日常的文件管理和处理过程中,我们可能会遇到需要将文件整理到不同文件夹中的需求,下面我们就来看看如何使用Python实现重命名文件并移动到对应文件夹吧... 目录检查并删除空文件夹1. 基本需求2. 实现代码解析3. 代码解释4. 代码执行结果5. 总结方法补充在

Python自动化办公之合并多个Excel

《Python自动化办公之合并多个Excel》在日常的办公自动化工作中,尤其是处理大量数据时,合并多个Excel表格是一个常见且繁琐的任务,下面小编就来为大家介绍一下如何使用Python轻松实现合... 目录为什么选择 python 自动化目标使用 Python 合并多个 Excel 文件安装所需库示例代码

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

shell脚本自动删除30天以前的文件(最新推荐)

《shell脚本自动删除30天以前的文件(最新推荐)》该文章介绍了如何使用Shell脚本自动删除指定目录下30天以前的文件,并通过crontab设置定时任务,此外,还提供了如何使用Shell脚本删除E... 目录shell脚本自动删除30天以前的文件linux按照日期定时删除elasticsearch索引s