【机器人的眼睛】机器视觉在汽车零部件检测中的应用

2023-11-29 17:10

本文主要是介绍【机器人的眼睛】机器视觉在汽车零部件检测中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

随着汽车加工工艺技术的提升以及模块化趋势的呈现,汽车零部件的结构也越来越复杂,外形也呈现出多种多样的趋势。这给成型后的产品尺寸检测带来了一定的困难。

传统的汽车零部件尺寸检测方法

由于条件所限,传统的汽车零部件尺寸检测方法只能采用手动的方式,专业的检测人员手持千分尺等测量工具对产品进行各个部位的尺寸测量。但由于汽车零部件的形状非常复杂,往往一个产品上存在的测点多达数十个,这样测量一个产品就需要花费大量的时间,存在着测量效率低、采样精度低、采样频次低、数据遗漏以及人工输入错误等问题,同时这种测量也不适用于现代化的管理,无法应对数据处理的实时性和数据监管等。因此,工业质检的智能化赋能已经成为节省成本,提高产能的必然趋势。

智能质检难题

但是向智能质检转型的过程并不顺利,首先缺陷检测较复杂,主要包括内部材质检测、尺寸形位检测及外观缺陷检测。许多企业前期也尝试过组建算法团队做AI开发,解决检测智能化问题,但组建算法团队所需的算法人员、投入研究过程的时间成本、AI训练需要投入的服务器等机器成本累加起来,预估达到百万级,负担过重。

汽车制造商在智能化转型的过程中主要遇到会以下主要问题:

  1. 如何降低业务探索阶段的成本投入?
  2. 如何对瑕疵缺陷做到精确的标注,从而提供高质量的训练数据?
  3. 如何收集到各种瑕疵缺陷的数据,弥补缺陷样本少的痛点?
  4. 如何适配各种硬件,简单高效完成部署工作?如何保证预测效率?

 那么,跑码地Coovally-智能AI视觉平台就是最好的助手!

Coovally针对高精密制造中部件和产品的表面极微瑕疵、微结构缺陷、大范围一致性、高速高效等问题能够形成一整套有效的解决方案体现了“以数据为中心”或“数据驱动”的AI落地技术。 是解决“实验室结果好于实际运行效果”这一痛点的核心利器。

Coovally基于模块化的工程方式,以提升数据质量为中心,提供智能数据标注模块、数据增强工程化流程模块、AI模型库(包含150+常规机器学习与深度学习模型)、项目管理与分享模块、模型适配与部署模块。并且支持云端模型转换和边端模型转换。云端模型转换指转换后的模型可部署在云端的服务器上进行推理,边端模型转换指转换后的模型可部署在边缘端的设备上进行推理。从根源上解决“高昂价格、模型单一”的问题,可一次性部署平台,自由使用所有模型。

汽车轴承的缺陷检测为例,根据缺陷类型选择合适的任务类型:

端面与外径缺陷检测因需要定位到具体的缺陷位置,且缺陷特征较为一致,因此适用于物体检测模型;内径锈蚀检测因需要定位到锈斑的具体位置,且锈斑大小、形状不统一,因此适用于图像分割模型。

接下来汽车轴承的缺陷检测着手数据准备→模型训练→模型部署

数据准备

汽车轴承待检测的瑕疵缺陷过小,标注难度大,同时标注数量大,人力成本高。在跑码地Coovally的标注界面上,可以按需缩放或对瑕疵缺陷进行增强,从而进行精准标注。

模型训练

部分瑕疵缺陷的样本量少,如何提升数据利用率?

借由跑码地Coovally的图片增强功能,可将一张图片衍生多张图片,提高数据利用率。同时,通过自动超参搜索策略,完成相对复杂场景数据训练的利用率,同时可以产出基于这个场景最优的参数组合,达到更高的模型精度。如果目标检测物过小,可以选择小目标检测算法无代码训练出精确率达90%的可用模型。

模型部署

模型训练完成后可直接下载pt文件进行适配,简便又快捷。

基于跑码地Coovally机器学习检测算法,使用工业相机对产线上的轴承进行图片拍摄,通过传感器获取轴承的几何参数绘制成图像,生产现场的服务器进行图像分类和检测,判断轴承的外观质量是否符合要求,可检测轴承的擦伤、磕碰伤、磨伤、削料、锈蚀等瑕疵。最终达到缩减开发人员、提高开发效率、简化模型部署的效果。

实际上,机器学习检测算法在产品检测方面的应用还有很大的潜力可供挖掘。不仅在汽车零部件行业,在电子、半导体、3C、铁路、研究院所都有很强劲的需求,跑码地Coovally的最终目标就是帮助更多企业低成本实现AI算法自由。

这篇关于【机器人的眼睛】机器视觉在汽车零部件检测中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/433649

相关文章

Java中的Lambda表达式及其应用小结

《Java中的Lambda表达式及其应用小结》Java中的Lambda表达式是一项极具创新性的特性,它使得Java代码更加简洁和高效,尤其是在集合操作和并行处理方面,:本文主要介绍Java中的La... 目录前言1. 什么是Lambda表达式?2. Lambda表达式的基本语法例子1:最简单的Lambda表

Python结合PyWebView库打造跨平台桌面应用

《Python结合PyWebView库打造跨平台桌面应用》随着Web技术的发展,将HTML/CSS/JavaScript与Python结合构建桌面应用成为可能,本文将系统讲解如何使用PyWebView... 目录一、技术原理与优势分析1.1 架构原理1.2 核心优势二、开发环境搭建2.1 安装依赖2.2 验

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

SpringShell命令行之交互式Shell应用开发方式

《SpringShell命令行之交互式Shell应用开发方式》本文将深入探讨SpringShell的核心特性、实现方式及应用场景,帮助开发者掌握这一强大工具,具有很好的参考价值,希望对大家有所帮助,如... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

MySQL 分区与分库分表策略应用小结

《MySQL分区与分库分表策略应用小结》在大数据量、复杂查询和高并发的应用场景下,单一数据库往往难以满足性能和扩展性的要求,本文将详细介绍这两种策略的基本概念、实现方法及优缺点,并通过实际案例展示如... 目录mysql 分区与分库分表策略1. 数据库水平拆分的背景2. MySQL 分区策略2.1 分区概念

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1