yolov8-seg 分割推理流程

2023-11-29 08:15
文章标签 流程 分割 yolov8 推理 seg

本文主要是介绍yolov8-seg 分割推理流程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、分割+检测

二、图像预处理

二、推理

三、后处理与可视化

3.1、后处理

3.2、mask可视化

四、完整pytorch代码


一、分割+检测

注:本篇只是阐述推理流程,tensorrt实现后续跟进。

yolov8-pose的tensorrt部署代码稍后更新,还是在仓库:GitHub - FeiYull/TensorRT-Alpha: 🔥🔥🔥TensorRT-Alpha supports YOLOv8、YOLOv7、YOLOv6、YOLOv5、YOLOv4、v3、YOLOX、YOLOR...🚀🚀🚀CUDA IS ALL YOU NEED.🍎🍎🍎It also supports end2end CUDA C acceleration and multi-batch inference.

也可以关注:TensorRT系列教程-CSDN博客

以下是官方预测代码:

from ultralytics import YOLO
model = YOLO(model='yolov8n-pose.pt')
model.predict(source="d:/Data/1.jpg", save=True)

推理过程无非是:图像预处理 -> 推理 -> 后处理 + 可视化,这三个关键步骤在文件大概247行:D:\CodePython\ultralytics\ultralytics\engine\predictor.py,代码如下:

# Preprocess
with profilers[0]:im = self.preprocess(im0s) # 图像预处理# Inference
with profilers[1]:preds = self.inference(im, *args, **kwargs) # 推理# Postprocess
with profilers[2]:self.results = self.postprocess(preds, im, im0s) # 后处理

二、图像预处理

通过debug,进入上述self.preprocess函数,看到代码实现如下。处理流程大概是:padding(满足矩形推理),图像通道转换,即:BGR装RGB,检查图像数据是否连续,存储顺序有HWC转为CHW,然后归一化。需要注意,原始pytorch框架图像预处理的时候,会将图像缩放+padding为HxW的图像,其中H、W为32倍数,而导出tensorrt的时候,为了高效推理,H、W 固定为640x640。

def preprocess(self, im):"""Prepares input image before inference.Args:im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list."""not_tensor = not isinstance(im, torch.Tensor)if not_tensor:im = np.stack(self.pre_transform(im))im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW, (n, 3, h, w)im = np.ascontiguousarray(im)  # contiguousim = torch.from_numpy(im)img = im.to(self.device)img = img.half() if self.model.fp16 else img.float()  # uint8 to fp16/32if not_tensor:img /= 255  # 0 - 255 to 0.0 - 1.0return img

二、推理

图像预处理之后,直接推理就行了,这里是基于pytorch推理。

def inference(self, im, *args, **kwargs):visualize = increment_path(self.save_dir / Path(self.batch[0][0]).stem,mkdir=True) if self.args.visualize and (not self.source_type.tensor) else Falsereturn self.model(im, augment=self.args.augment, visualize=visualize)

三、后处理与可视化

3.1、后处理

640x640输入之后,有两个输出,其中

  • output1:尺寸为:116X8400,其中116=4+80+32,32为seg部分特征,经过NMS之后,输出为:N*38,其中38=4 + 2 + 32
  • output2:尺寸为32x160x160,拿上面NMS后的特征图后面,即:N*38矩阵后面部分N*32的特征图和output2作矩阵乘法,得到N*160*160的矩阵,接着执行sigmiod,然后拉平得到N*160*160 的mask。

然后将bbox缩放160*160的坐标系,如下代码,用于截断越界的mask,就是如下函数。最后,将所有mask上采样到640*640,然后用阀值0.5过一下。最后mask中只有0和1了,结束。

有关def crop_mask(masks, boxes):的理解:

def crop_mask(masks, boxes):"""It takes a mask and a bounding box, and returns a mask that is cropped to the bounding boxArgs:masks (torch.Tensor): [n, h, w] tensor of masksboxes (torch.Tensor): [n, 4] tensor of bbox coordinates in relative point formReturns:(torch.Tensor): The masks are being cropped to the bounding box."""n, h, w = masks.shapex1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1)  # x1 shape(n,1,1)r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :]  # rows shape(1,1,w)c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None]  # cols shape(1,h,1)return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))

上面代码最后一句return,如下图理解,mask中所有点,例如点(r,c)必须在bbox内部。做法就是将bbox缩放到和mask一样的坐标系(160x160)如下图,然后使用绿色的bbox将mask进行截断:

3.2、mask可视化

直接将mask从灰度图转为彩色图,然后将类别对应的颜色乘以0.4,最后加在彩色图上就行了。

四、完整pytorch代码

将以上流程合并起来,并加以修改,完整代码如下:

import torch
import cv2 as cv
import numpy as np
from ultralytics.data.augment import LetterBox
from ultralytics.utils import ops
from ultralytics.engine.results import Results
import copy# path = 'd:/Data/1.jpg'
path = 'd:/Data/640640.jpg'
device = 'cuda:0'
conf = 0.25
iou = 0.7# preprocess
im = cv.imread(path)
# letterbox
im = [im]
orig_imgs = copy.deepcopy(im)
im = [LetterBox([640, 640], auto=True, stride=32)(image=x) for x in im]
im = im[0][None] # im = np.stack(im)
im = im[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
im = np.ascontiguousarray(im)  # contiguous
im = torch.from_numpy(im)
img = im.to(device)
img = img.float()
img /= 255
# load model pt
ckpt = torch.load('yolov8n-seg.pt', map_location='cpu')
model = ckpt['model'].to(device).float()  # FP32 model
model.eval()# inference
preds = model(img)# poseprocess
p = ops.non_max_suppression(preds[0], conf, iou, agnostic=False, max_det=300, nc=80, classes=None)
results = []
# 如果导出onnx,第二个输出维度是1,应该就是mask,需要后续上采样
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1]  # second output is len 3 if pt, but only 1 if exported???????
for i, pred in enumerate(p):orig_img = orig_imgs[i]if not len(pred):  # save empty boxesresults.append(Results(orig_img=orig_img, path=path, names=model.names, boxes=pred[:, :6]))continuemasks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True)  # HWCif not isinstance(orig_imgs, torch.Tensor):pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)results.append(Results(orig_img=orig_img, path=path, names=model.names, boxes=pred[:, :6], masks=masks))# show
plot_args = {'line_width': None,'boxes': True,'conf': True, 'labels': True}
plot_args['im_gpu'] = img[0]
result = results[0]
plotted_img = result.plot(**plot_args)
cv.imshow('plotted_img', plotted_img)
cv.waitKey(0)
cv.destroyAllWindows()

这篇关于yolov8-seg 分割推理流程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432089

相关文章

Linux流媒体服务器部署流程

《Linux流媒体服务器部署流程》文章详细介绍了流媒体服务器的部署步骤,包括更新系统、安装依赖组件、编译安装Nginx和RTMP模块、配置Nginx和FFmpeg,以及测试流媒体服务器的搭建... 目录流媒体服务器部署部署安装1.更新系统2.安装依赖组件3.解压4.编译安装(添加RTMP和openssl模块

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

springboot启动流程过程

《springboot启动流程过程》SpringBoot简化了Spring框架的使用,通过创建`SpringApplication`对象,判断应用类型并设置初始化器和监听器,在`run`方法中,读取配... 目录springboot启动流程springboot程序启动入口1.创建SpringApplicat

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

通过prometheus监控Tomcat运行状态的操作流程

《通过prometheus监控Tomcat运行状态的操作流程》文章介绍了如何安装和配置Tomcat,并使用Prometheus和TomcatExporter来监控Tomcat的运行状态,文章详细讲解了... 目录Tomcat安装配置以及prometheus监控Tomcat一. 安装并配置tomcat1、安装

MySQL的cpu使用率100%的问题排查流程

《MySQL的cpu使用率100%的问题排查流程》线上mysql服务器经常性出现cpu使用率100%的告警,因此本文整理一下排查该问题的常规流程,文中通过代码示例讲解的非常详细,对大家的学习或工作有一... 目录1. 确认CPU占用来源2. 实时分析mysql活动3. 分析慢查询与执行计划4. 检查索引与表

Git提交代码详细流程及问题总结

《Git提交代码详细流程及问题总结》:本文主要介绍Git的三大分区,分别是工作区、暂存区和版本库,并详细描述了提交、推送、拉取代码和合并分支的流程,文中通过代码介绍的非常详解,需要的朋友可以参考下... 目录1.git 三大分区2.Git提交、推送、拉取代码、合并分支详细流程3.问题总结4.git push

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB