Opencv-C++笔记 (19) : 分水岭图像分割

2023-11-29 01:30

本文主要是介绍Opencv-C++笔记 (19) : 分水岭图像分割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、基于距离变换与分水岭的图像分割
    • 1、图像分割
    • 2、距离和变换与分水岭
      • 距离变换常见算法有两种
      • 分水岭变换常见的算法
    • 3、距离变换API函数接口
    • 4、watershed 分水岭函数API接口
      • 步骤
    • 5、代码

一、基于距离变换与分水岭的图像分割

1、图像分割

图像分割(Image Segmentation)是图像处理最重要的处理手段之一
图像分割的目标是将图像中像素根据一定的规则分为若干(N)个cluster集合,每个集合包含一类像素。
根据算法分为监督学习方法和无监督学习方法,图像分割的算法多数都是无监督学习方法 - KMeans

2、距离和变换与分水岭

距离变换常见算法有两种

1、不断膨胀/ 腐蚀得到
2、基于倒角距离

分水岭变换常见的算法

分水岭法(Meyer)是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。该算法的实现可以模拟成洪水淹没的过程,图像的最低点首先被淹没,然后水逐渐淹没整个山谷。当水位到达一定高度的时候将会溢出,这时在水溢出的地方修建堤坝,重复这个过程直到整个图像上的点全部被淹没,这时所建立的一系列堤坝就成为分开各个盆地的分水岭。分水岭算法对微弱的边缘有着良好的响应,但图像中的噪声会使分水岭算法产生过分割的现象。
————————————————

基于浸泡理论实现

3、距离变换API函数接口

距离变换用于计算图像中每一个非零点像素与其周围最近的零点像素之间的距离,返回的值保存了每一个非零点与最近零点的距离信息;在图像上的体现为图像上越亮的点,代表了离零点的距离越远。

void distanceTransform( 
InputArray src,  
OutputArray dst,
OutputArray labels,
int distanceType,
int maskSize,
int labelType=DIST_LABEL_CCOMP
)

(1)src是单通道的8bit的二值图像(只有0或1)
(2)dst表示的是计算距离的输出图像,可以使单通道32bit浮点数据
(3)distanceType表示的是选取距离的类型,可以设置为
DIST_USER User defined distance
DIST_L1=1 distance = |x1-x2| + |y1-y2
DIST_L2 the simple euclidean distance
DIST_C distance = max(|x1-x2|,|y1-y2|)
DIST_L12 L1-L2 metric: distance =2(sqrt(1+x*x/2) - 1))
DIST_FAIR distance = c^2(|x|/c-log(1+|x|/c)),c = 1.3998
DIST_WELSCH distance = c2/2(1-exp(-(x/c)2)), c= 2.9846
DIST_HUBER distance = |x|<c ? x^2/2 :c(|x|-c/2), c=1.345
(4)maskSize表示的是距离变换的掩膜模板,可以设置为3,5或CV_DIST_MASK_PRECISE,对 CV_DIST_L1 或CV_DIST_C 的情况,参数值被强制设定为 3, 因为3×3 mask 给出5×5 mask 一样的结果,而且速度还更快。
DIST_MASK_3 mask=3
DIST_MASK_5 mask=5
DIST_MASK-PRECISE
(5)labels表示可选输出2维数组;
(6)labelType表示的是输出二维数组的类型,8位或者32位浮点数,图像是单一通道,并且大小与输入图像一致

4、watershed 分水岭函数API接口

void watershed( InputArray image, InputOutputArray markers );

参数说明

(1)参数 image,必须是一个8bit3通道彩色图像矩阵序列。
(2) 输入或输出32位单通道的标记,和图像一样大小。(输入高峰轮廓标记);在执行分水岭函数watershed之前,必须对第二个参数markers进行处理,它应该包含不同区域的轮廓,每个轮廓有一个自己唯一的编号,轮廓的定位可以通过Opencv中findContours方法实现,这个是执行分水岭之前的要求。

算法会根据markers传入的轮廓作为种子(也就是所谓的注水点),对图像上其他的像素点根据分水岭算法规则进行判断,并对每个像素点的区域归属进行划定,直到处理完图像上所有像素点。而区域与区域之间的分界处的值被置为“-1”,以做区分。


步骤

1、将白色背景变成黑色-目的是为后面的变换做准备
2、使用filter2D与拉普拉斯算子实现图像对比度提高,sharp(锐化)
3、转为二值图像通过threshold
4、距离变换
5、对距离变换结果进行归一化到[0~1]之间
6、使用阈值,再次二值化,得到标记
7、腐蚀得到每个Peak - erode
8、发现轮廓 – findContours
9、绘制轮廓- drawContours
10、分水岭变换 watershed
11、对每个分割区域着色输出结果
————————————————

5、代码

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>using namespace std;
using namespace cv;int main(int argc, char** argv) {char input_win[] = "input image";char watershed_win[] = "watershed segmentation demo";Mat src = imread("D:/vcprojects/images/cards.png");// Mat src = imread("D:/kuaidi.jpg");if (src.empty()) {printf("could not load image...\n");return -1;}namedWindow(input_win, CV_WINDOW_AUTOSIZE);imshow(input_win, src);// 1. change backgroundfor (int row = 0; row < src.rows; row++) {for (int col = 0; col < src.cols; col++) {if (src.at<Vec3b>(row, col) == Vec3b(255, 255, 255)) {src.at<Vec3b>(row, col)[0] = 0;src.at<Vec3b>(row, col)[1] = 0;src.at<Vec3b>(row, col)[2] = 0;}}}namedWindow("black background", CV_WINDOW_AUTOSIZE);imshow("black background", src);// sharpenMat kernel = (Mat_<float>(3, 3) << 1, 1, 1, 1, -8, 1, 1, 1, 1);Mat imgLaplance;Mat sharpenImg = src;filter2D(src, imgLaplance, CV_32F, kernel, Point(-1, -1), 0, BORDER_DEFAULT);src.convertTo(sharpenImg, CV_32F);Mat resultImg = sharpenImg - imgLaplance;resultImg.convertTo(resultImg, CV_8UC3);imgLaplance.convertTo(imgLaplance, CV_8UC3);imshow("sharpen image", resultImg);// src = resultImg; // copy back// convert to binaryMat binaryImg;cvtColor(src, resultImg, CV_BGR2GRAY);threshold(resultImg, binaryImg, 40, 255, THRESH_BINARY | THRESH_OTSU);imshow("binary image", binaryImg);Mat distImg;distanceTransform(binaryImg, distImg, DIST_L1, 3, 5);normalize(distImg, distImg, 0, 1, NORM_MINMAX);imshow("distance result", distImg);// binary againthreshold(distImg, distImg, .4, 1, THRESH_BINARY);Mat k1 = Mat::ones(13, 13, CV_8UC1);erode(distImg, distImg, k1, Point(-1, -1));imshow("distance binary image", distImg);// markers Mat dist_8u;distImg.convertTo(dist_8u, CV_8U);vector<vector<Point>> contours;findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0));// create makersMat markers = Mat::zeros(src.size(), CV_32SC1);for (size_t i = 0; i < contours.size(); i++) {drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i) + 1), -1);}circle(markers, Point(5, 5), 3, Scalar(255, 255, 255), -1);imshow("my markers", markers*1000);// perform watershedwatershed(src, markers);Mat mark = Mat::zeros(markers.size(), CV_8UC1);markers.convertTo(mark, CV_8UC1);bitwise_not(mark, mark, Mat());imshow("watershed image", mark);// generate random colorvector<Vec3b> colors;for (size_t i = 0; i < contours.size(); i++) {int r = theRNG().uniform(0, 255);int g = theRNG().uniform(0, 255);int b = theRNG().uniform(0, 255);colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));}// fill with color and display final resultMat dst = Mat::zeros(markers.size(), CV_8UC3);for (int row = 0; row < markers.rows; row++) {for (int col = 0; col < markers.cols; col++) {int index = markers.at<int>(row, col);if (index > 0 && index <= static_cast<int>(contours.size())) {dst.at<Vec3b>(row, col) = colors[index - 1];}else {dst.at<Vec3b>(row, col) = Vec3b(0, 0, 0);}}}imshow("Final Result", dst);waitKey(0);return 0;
}

输入原图像和锐化图像
在这里插入图片描述

原图和黑背景图(背景应为黑色)
在这里插入图片描述

threshold转化的二值化图片和距离变换结果图
在这里插入图片描述

距离变换结果图和二值化图像
在这里插入图片描述

这篇关于Opencv-C++笔记 (19) : 分水岭图像分割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430953

相关文章

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

使用Python实现批量分割PDF文件

《使用Python实现批量分割PDF文件》这篇文章主要为大家详细介绍了如何使用Python进行批量分割PDF文件功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、架构设计二、代码实现三、批量分割PDF文件四、总结本文将介绍如何使用python进js行批量分割PDF文件的方法

使用C/C++调用libcurl调试消息的方式

《使用C/C++调用libcurl调试消息的方式》在使用C/C++调用libcurl进行HTTP请求时,有时我们需要查看请求的/应答消息的内容(包括请求头和请求体)以方便调试,libcurl提供了多种... 目录1. libcurl 调试工具简介2. 输出请求消息使用 CURLOPT_VERBOSE使用 C

C++实现获取本机MAC地址与IP地址

《C++实现获取本机MAC地址与IP地址》这篇文章主要为大家详细介绍了C++实现获取本机MAC地址与IP地址的两种方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实际工作中,项目上常常需要获取本机的IP地址和MAC地址,在此使用两种方案获取1.MFC中获取IP和MAC地址获取

C/C++通过IP获取局域网网卡MAC地址

《C/C++通过IP获取局域网网卡MAC地址》这篇文章主要为大家详细介绍了C++如何通过Win32API函数SendARP从IP地址获取局域网内网卡的MAC地址,感兴趣的小伙伴可以跟随小编一起学习一下... C/C++通过IP获取局域网网卡MAC地址通过win32 SendARP获取MAC地址代码#i