如何基于gensim和Sklearn实现文本矢量化

2023-11-29 00:20

本文主要是介绍如何基于gensim和Sklearn实现文本矢量化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     大家利用机器学习或深度学习开展文本分类或关联性分析之前,由于计算机只能分析数值型数据,而人类所熟悉的自然语言文字,机器学习算法是一窍不通的,因此需要将大类的文本及前后关系进行设计,并将其转换为数值化表示。一般来说,文本语言模型主要有词袋模型(BOW)、词向量模型和主题模型,目前比较常见是前两种,各种机器学习框架都有相应的word2vec的机制和支持模型,比如gensim和Scikit-learn(简称Sklearn),词袋模型向量化技术主要有One-Hot、文本计数数值化、词频-逆文档频率(TF-IDF)。详见以下示例,分别讲述了上述两种框架下的应用,同时结合了分词技术,去掉了停用词,加入了自定义分词。具体如下,供大家学习参考。
一、运行环境:python3.10环境,安装了 sklearn、gensim、jieba等。
二、应用示例:实现多段文本的自动分词,之后进行词袋模型的矢量化表示。完整代码如下。

from sklearn.feature_extraction import DictVectorizer  
from sklearn.feature_extraction.text import CountVectorizer  
from sklearn.feature_extraction.text import TfidfVectorizer  
from gensim.models import Word2Vec  
import gensim  
import jieba,sys  
# 将当前目录加载道path
sys.path.append("../") 
# 加载自定义分词词典  
jieba.load_userdict("../data/user_dict.txt")  # 去掉一些停用词和数字  
def rm_tokens(words,stwlist):  words_list = list(words)  stop_words = stwlist  for i in range(words_list.__len__())[::-1]:  if words_list[i] in stop_words: # 去除停用词  words_list.pop(i)  elif len(words_list[i]) == 1:  # 去除单个字符  words_list.pop(i)  elif words_list[i] == " ":  # 去除空字符  words_list.pop(i)  elif words_list[i].strip() == "/" or words_list[i].strip()  == "\\" or words_list[i].strip()  == "'" or words_list[i].strip()  == "\"":  # 去斜杠  words_list.pop(i)  return words_list  # 进行分词并返回
def cut_words(text):  result = rm_tokens(jieba.cut(text),stwlist)  print('list(jieba.cut(text))结果为:', result)  txt = ' '.join(result)  return txt  
# 创建停用词列表  
def get_stop_words(path=r'../data/user_stopwords.txt'):  file = open(path, 'r',encoding='utf-8').read().split('\n')  return set(file)  # 2 获取停用词  
stwlist = get_stop_words()  #类别向量数值化方式  
data = [  
{'name': 'Alan Turing', 'born': 1912, 'died': 1954},  
{'name': 'Herbert A. Simon', 'born': 1916, 'died': 2001},  
{'name': 'Jacek Karpinski', 'born': 1927, 'died': 2010},  
{'name': 'J.C.R. Licklider', 'born': 1915, 'died': 1990},  
{'name': 'Marvin Minsky', 'born': 1927, 'died': 2016},  
]#1.One-Hot编码,文本矢量化或数值化表示  
vec = DictVectorizer(sparse=False, dtype=int)  
print(vec.fit_transform(data))  
print(vec.get_feature_names())  
vec = DictVectorizer(sparse=True, dtype=int) #One-Hot编码,设置稀疏矩阵的紧凑表示  
data2=vec.fit_transform(data)  sample=[  '列出了aaa井的基本数据信息,描述了该井所在地区的钻探成果和钻井简况',  '列出了bbb井的基本数据信息及下x深结构图,详细记录了自拖航至,弃井作业,综合录井日记',  '列出了ccc井的基本数据信息,描述了该井所在地区的钻探成果和钻井简况'  
]  
sample2 = []  
for i in sample:  sample2.append(cut_words(i))  #2.文本计数的数值化转换表示  
vec = CountVectorizer(lowercase=False,stop_words=None,analyzer='word') #文本计数的数值化转换  
X = vec.fit_transform(sample2)  
print(vec.get_feature_names())  
print(X.toarray())  
print("词袋 = ",vec.vocabulary_)   #词袋,根据分词结果和首字母,进行编号  #3.词频-逆文档频率,文本矢量化或数值化表示  
vec = TfidfVectorizer(lowercase=False,stop_words=None,analyzer='word', use_idf=True,smooth_idf=True) #词频-逆文档频率  
X = vec.fit_transform(sample2)  
print(vec.get_feature_names())  
'基本数据信息' in vec.get_feature_names() #判断是否包含指定字符串  
print(X.toarray()) #输出词向量# 4.gensim的词袋模型  
# 需要将数据放在Dictionary中,带有unicode token  
sample2_unitoken = [d.split() for d in sample2]  
dictionary = gensim.corpora.Dictionary(sample2_unitoken)  
vec = [dictionary.doc2bow(word) for word in sample2_unitoken]  
print(vec)   #输出词向量# 5.gensim的n-gram模型  
bigram = gensim.models.Phrases(sample2_unitoken)  
txts = [bigram[line] for line in sample2_unitoken]  
dictionary = gensim.corpora.Dictionary(txts)  
vec = [dictionary.doc2bow(text) for text in txts]  
print(vec)   #输出词向量# 6.gensim的tfidf模型  
dictionary = gensim.corpora.Dictionary(sample2_unitoken)  
doc2bow = [dictionary.doc2bow(word) for word in sample2_unitoken]  
tfidf=gensim.models.TfidfModel(doc2bow)  
vec=[]  
for document in tfidf[doc2bow]:  vec.append(document)  
print(vec)  #输出词向量

这篇关于如何基于gensim和Sklearn实现文本矢量化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430768

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、