如何基于gensim和Sklearn实现文本矢量化

2023-11-29 00:20

本文主要是介绍如何基于gensim和Sklearn实现文本矢量化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     大家利用机器学习或深度学习开展文本分类或关联性分析之前,由于计算机只能分析数值型数据,而人类所熟悉的自然语言文字,机器学习算法是一窍不通的,因此需要将大类的文本及前后关系进行设计,并将其转换为数值化表示。一般来说,文本语言模型主要有词袋模型(BOW)、词向量模型和主题模型,目前比较常见是前两种,各种机器学习框架都有相应的word2vec的机制和支持模型,比如gensim和Scikit-learn(简称Sklearn),词袋模型向量化技术主要有One-Hot、文本计数数值化、词频-逆文档频率(TF-IDF)。详见以下示例,分别讲述了上述两种框架下的应用,同时结合了分词技术,去掉了停用词,加入了自定义分词。具体如下,供大家学习参考。
一、运行环境:python3.10环境,安装了 sklearn、gensim、jieba等。
二、应用示例:实现多段文本的自动分词,之后进行词袋模型的矢量化表示。完整代码如下。

from sklearn.feature_extraction import DictVectorizer  
from sklearn.feature_extraction.text import CountVectorizer  
from sklearn.feature_extraction.text import TfidfVectorizer  
from gensim.models import Word2Vec  
import gensim  
import jieba,sys  
# 将当前目录加载道path
sys.path.append("../") 
# 加载自定义分词词典  
jieba.load_userdict("../data/user_dict.txt")  # 去掉一些停用词和数字  
def rm_tokens(words,stwlist):  words_list = list(words)  stop_words = stwlist  for i in range(words_list.__len__())[::-1]:  if words_list[i] in stop_words: # 去除停用词  words_list.pop(i)  elif len(words_list[i]) == 1:  # 去除单个字符  words_list.pop(i)  elif words_list[i] == " ":  # 去除空字符  words_list.pop(i)  elif words_list[i].strip() == "/" or words_list[i].strip()  == "\\" or words_list[i].strip()  == "'" or words_list[i].strip()  == "\"":  # 去斜杠  words_list.pop(i)  return words_list  # 进行分词并返回
def cut_words(text):  result = rm_tokens(jieba.cut(text),stwlist)  print('list(jieba.cut(text))结果为:', result)  txt = ' '.join(result)  return txt  
# 创建停用词列表  
def get_stop_words(path=r'../data/user_stopwords.txt'):  file = open(path, 'r',encoding='utf-8').read().split('\n')  return set(file)  # 2 获取停用词  
stwlist = get_stop_words()  #类别向量数值化方式  
data = [  
{'name': 'Alan Turing', 'born': 1912, 'died': 1954},  
{'name': 'Herbert A. Simon', 'born': 1916, 'died': 2001},  
{'name': 'Jacek Karpinski', 'born': 1927, 'died': 2010},  
{'name': 'J.C.R. Licklider', 'born': 1915, 'died': 1990},  
{'name': 'Marvin Minsky', 'born': 1927, 'died': 2016},  
]#1.One-Hot编码,文本矢量化或数值化表示  
vec = DictVectorizer(sparse=False, dtype=int)  
print(vec.fit_transform(data))  
print(vec.get_feature_names())  
vec = DictVectorizer(sparse=True, dtype=int) #One-Hot编码,设置稀疏矩阵的紧凑表示  
data2=vec.fit_transform(data)  sample=[  '列出了aaa井的基本数据信息,描述了该井所在地区的钻探成果和钻井简况',  '列出了bbb井的基本数据信息及下x深结构图,详细记录了自拖航至,弃井作业,综合录井日记',  '列出了ccc井的基本数据信息,描述了该井所在地区的钻探成果和钻井简况'  
]  
sample2 = []  
for i in sample:  sample2.append(cut_words(i))  #2.文本计数的数值化转换表示  
vec = CountVectorizer(lowercase=False,stop_words=None,analyzer='word') #文本计数的数值化转换  
X = vec.fit_transform(sample2)  
print(vec.get_feature_names())  
print(X.toarray())  
print("词袋 = ",vec.vocabulary_)   #词袋,根据分词结果和首字母,进行编号  #3.词频-逆文档频率,文本矢量化或数值化表示  
vec = TfidfVectorizer(lowercase=False,stop_words=None,analyzer='word', use_idf=True,smooth_idf=True) #词频-逆文档频率  
X = vec.fit_transform(sample2)  
print(vec.get_feature_names())  
'基本数据信息' in vec.get_feature_names() #判断是否包含指定字符串  
print(X.toarray()) #输出词向量# 4.gensim的词袋模型  
# 需要将数据放在Dictionary中,带有unicode token  
sample2_unitoken = [d.split() for d in sample2]  
dictionary = gensim.corpora.Dictionary(sample2_unitoken)  
vec = [dictionary.doc2bow(word) for word in sample2_unitoken]  
print(vec)   #输出词向量# 5.gensim的n-gram模型  
bigram = gensim.models.Phrases(sample2_unitoken)  
txts = [bigram[line] for line in sample2_unitoken]  
dictionary = gensim.corpora.Dictionary(txts)  
vec = [dictionary.doc2bow(text) for text in txts]  
print(vec)   #输出词向量# 6.gensim的tfidf模型  
dictionary = gensim.corpora.Dictionary(sample2_unitoken)  
doc2bow = [dictionary.doc2bow(word) for word in sample2_unitoken]  
tfidf=gensim.models.TfidfModel(doc2bow)  
vec=[]  
for document in tfidf[doc2bow]:  vec.append(document)  
print(vec)  #输出词向量

这篇关于如何基于gensim和Sklearn实现文本矢量化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430768

相关文章

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

前端原生js实现拖拽排课效果实例

《前端原生js实现拖拽排课效果实例》:本文主要介绍如何实现一个简单的课程表拖拽功能,通过HTML、CSS和JavaScript的配合,我们实现了课程项的拖拽、放置和显示功能,文中通过实例代码介绍的... 目录1. 效果展示2. 效果分析2.1 关键点2.2 实现方法3. 代码实现3.1 html部分3.2

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

java父子线程之间实现共享传递数据

《java父子线程之间实现共享传递数据》本文介绍了Java中父子线程间共享传递数据的几种方法,包括ThreadLocal变量、并发集合和内存队列或消息队列,并提醒注意并发安全问题... 目录通过 ThreadLocal 变量共享数据通过并发集合共享数据通过内存队列或消息队列共享数据注意并发安全问题总结在 J