DS二叉树--赫夫曼树解码/最优二叉树【数据结构】

2023-11-28 02:01

本文主要是介绍DS二叉树--赫夫曼树解码/最优二叉树【数据结构】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DS二叉树–赫夫曼树解码

题目描述
已知赫夫曼编码算法和程序,在此基础上进行赫夫曼解码

可以增加一个函数:int Decode(const string codestr, char txtstr[]);//输入编码串codestr,输出解码串txtstr

该方法如果解码成功则返回1,解码失败则返回-1,本程序增加宏定义ok表示1,error表示-1

赫夫曼解码算法如下:

定义指针p指向赫夫曼树结点,指针i指向编码串,定义ch逐个读取编码串的字符

初始操作包括读入编码串str,设置p指向根结点,i为0表示指向串首,执行以下循环:

1)取编码串的第i个字符放入ch

2)如果ch是字符0,则p跳转到左孩子;如果ch是字符1,则p跳转到右孩子;如果ch非0非1,表示编码串有错误,报错退出

3)如果p指的结点是叶子,输出解码字符,p跳回根结点,i++,跳步骤1

4)如果p指的结点不是叶子且i未到编码串末尾,i++,跳步骤1

5)如果p指的结点不是叶子且i到达编码串末尾,报错退出

当i到达编码串末尾,解码结束。

输入
第一行先输入n,表示有n个叶子
第二行输入n个权值,权值全是小于1万的正整数
第三行输入n个字母,表示与权值对应的字符
第四行输入k,表示要输入k个编码串
第五行起输入k个编码串

输出
每行输出解码后的字符串,如果解码失败直接输出字符串“error”,不要输出部分解码结果

输入样例1
5
15 4 4 3 2
A B C D E
3
11111
10100001001
00000101100

输出样例1
AAAAA
ABEAD
error

最优二叉树/赫夫曼树

最优二叉树:也称哈夫曼树或者霍夫曼树、赫夫曼树,给定n个权值作为n个叶子结点(每个叶子结点会有权值),构造一颗二叉树,若该树的带权路径长度(wpl)达到最小
赫夫曼树:带权路径长度最短的树,权值较大的结点离根较进。(值都在叶子结点上)
构成赫夫曼树的步骤:

思路

  1. 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
  2. 取出根节点权值最小的两颗二叉树
  3. 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
  4. 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
#include<bits/stdc++.h>
using namespace std;
struct Node
{int weight,left,right,parent;string c;
}tree[105];
int main()
{int n;cin>>n;for(int i=1;i<=n;i++) {cin>>tree[i].weight;tree[i].parent=0;tree[i].left=0;tree[i].right=0;}for(int i=1;i<=n;i++) cin>>tree[i].c;int k;cin>>k;//编码串string s[105];for(int i=0;i<k;i++) cin>>s[i];//要新建n-1个节点for(int i=n+1;i<2*n;i++){tree[i].parent=0;tree[i].weight=0;//找两个权值最小的for(int j=0;j<2;j++){int small=20000,loc=0;for(int k=1;k<i;k++){if(tree[k].parent==0&&tree[k].weight<small){small=tree[k].weight;loc=k;}}tree[loc].parent=i;//默认左子树小右子树大(j)?tree[i].right=loc:tree[i].left=loc;tree[i].weight+=tree[loc].weight;}}//解码for(int i=0;i<k;i++){string str=s[i];string res="";int len=str.size();int k=0,cur=2*n-1;bool flag=0;while(k<len){//错误的 无法解码if(str[k]!='0'&&str[k]!='1'){flag=1;break;}//是叶子节点 有值可以参与解码if(tree[cur].left==0&&tree[cur].right==0){res+=tree[cur].c;cur=2*n-1;continue;}if(str[k]=='0'){if(tree[cur].left==0){flag=1;break;}cur=tree[cur].left;k++;if(k==len){if(tree[cur].left==0&&tree[cur].right==0){res+=tree[cur].c;cur=2*n-1;}else flag=1;}continue;}if(str[k]=='1'){if(tree[cur].right==0){flag=1;break;}cur=tree[cur].right;k++;if(k==len){if(tree[cur].left==0&&tree[cur].right==0){res+=tree[cur].c;cur=2*n-1;}else flag=1;}continue;}}if(flag){cout<<"error"<<endl;continue;}cout<<res<<endl;}return 0;
}

这篇关于DS二叉树--赫夫曼树解码/最优二叉树【数据结构】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/428884

相关文章

通过C#和RTSPClient实现简易音视频解码功能

《通过C#和RTSPClient实现简易音视频解码功能》在多媒体应用中,实时传输协议(RTSP)用于流媒体服务,特别是音视频监控系统,通过C#和RTSPClient库,可以轻松实现简易的音视... 目录前言正文关键特性解决方案实现步骤示例代码总结最后前言在多媒体应用中,实时传输协议(RTSP)用于流媒体服

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

《数据结构(C语言版)第二版》第八章-排序(8.3-交换排序、8.4-选择排序)

8.3 交换排序 8.3.1 冒泡排序 【算法特点】 (1) 稳定排序。 (2) 可用于链式存储结构。 (3) 移动记录次数较多,算法平均时间性能比直接插入排序差。当初始记录无序,n较大时, 此算法不宜采用。 #include <stdio.h>#include <stdlib.h>#define MAXSIZE 26typedef int KeyType;typedef char In

leetcode105 从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 前序遍历 preorder = [3,9,20,15,7]中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树: 3/ \9 20/ \15 7   class Solution {public TreeNode buildTree(int[] pr

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(

PHP实现二叉树遍历(非递归方式,栈模拟实现)

二叉树定义是这样的:一棵非空的二叉树由根结点及左、右子树这三个基本部分组成,根据节点的访问位置不同有三种遍历方式: ① NLR:前序遍历(PreorderTraversal亦称(先序遍历)) ——访问结点的操作发生在遍历其左右子树之前。 ② LNR:中序遍历(InorderTraversal) ——访问结点的操作发生在遍历其左右子树之中(间)。 ③ LRN:后序遍历(PostorderT

浙大数据结构:树的定义与操作

四种遍历 #include<iostream>#include<queue>using namespace std;typedef struct treenode *BinTree;typedef BinTree position;typedef int ElementType;struct treenode{ElementType data;BinTree left;BinTre

Python 内置的一些数据结构

文章目录 1. 列表 (List)2. 元组 (Tuple)3. 字典 (Dictionary)4. 集合 (Set)5. 字符串 (String) Python 提供了几种内置的数据结构来存储和操作数据,每种都有其独特的特点和用途。下面是一些常用的数据结构及其简要说明: 1. 列表 (List) 列表是一种可变的有序集合,可以存放任意类型的数据。列表中的元素可以通过索

浙大数据结构:04-树7 二叉搜索树的操作集

这道题答案都在PPT上,所以先学会再写的话并不难。 1、BinTree Insert( BinTree BST, ElementType X ) 递归实现,小就进左子树,大就进右子树。 为空就新建结点插入。 BinTree Insert( BinTree BST, ElementType X ){if(!BST){BST=(BinTree)malloc(sizeof(struct TNo