【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角

2023-11-27 14:15

本文主要是介绍【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

专栏系列文章如下:
【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍
【视觉SLAM十四讲学习笔记】第二讲——初识SLAM
【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵
【视觉SLAM十四讲学习笔记】第三讲——Eigen库

本章将介绍视觉SLAM的基本问题之一:如何描述刚体在三维空间中的运动

旋转向量

矩阵表示方式至少有一下两个缺点:

  1. SO(3)的旋转矩阵有9个量,但一次旋转只有3个自由度。因此这种表达方式是冗余的。同理,变换矩阵用16个量表达了6自由度的变换。
  2. 旋转矩阵自身带有约束:它必须是个正交矩阵,且行列式为 1。变换矩阵也是如此。当想要估计或优化一个旋转矩阵/变换矩阵时,这些约束会使得求解变得更困难。

因此,我们希望有一种方式能够紧凑地描述旋转和平移。例如,用一个三维向量表达旋转,用六维向量表达变换。事实上,任意旋转都可以用一个旋转轴和一个旋转角来刻画。于是,我们可以使用一个向量,其方向与旋转轴一致,而长度等于旋转角。这种向量称为旋转向量(或轴角/角轴,Axis-Angle),只需一个三维向量即可描述旋转。同样,对于变换矩阵,我们使用一个旋转向量和一个平移向量即可表达一次变换。这时的变量维数正好是六维。

考虑某个用R表示的旋转。如果用旋转向量来描述,假设旋转轴为一个单位长度的向量n,角度为 θ,那么向量 θn也可以描述这个旋转。

从旋转向量到旋转矩阵的转换过程由罗德里格斯公式(Rodrigues’s Formula )表明,转换的结果 :

img

符号∧是向量到反对称矩阵的转换符。反之,我们也可以计算从一个旋转矩阵到旋转向量的转换。对于转角 θ,取两边的(矩阵对角线元素之和),有

在这里插入图片描述

因此:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

关于转轴n,由于旋转轴上的向量在旋转后不发生改变,说明:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

因此,转轴n是矩阵R特征值1对应的特征向量。求解此方程,再归一化,就得到了旋转轴。也可以从“旋转轴经过旋转之后不变”的几何角度看待这个方程。

欧拉角

无论是旋转矩阵、旋转向量,它们虽然能描述旋转,但对我们人类是非常不直观的。当我们看到一个旋转矩阵或旋转向量时,很难想象出这个旋转究竟是什么样的。当它们变换时,我们也不知道物体是向哪个方向在转动。而欧拉角则提供了一种非常直观的方式来描述旋转——它使用了3个分离的转角,把一个旋转分解成 3 次绕不同轴的旋转。而人类很容易理解绕单个轴旋转的过程。

但是,由于分解方式有许多种,所以欧拉角也存在着众多不同的、易于混淆的定义方法。比如说,先绕X轴旋转,再绕Y轴,最后绕Z轴,就得到了一个XYZ轴的旋转。同理,可以定义ZYZ、ZYX等旋转方式。如果讨论得更细一些,还需要区分每次是绕固定轴旋转的,还是绕旋转之后的轴旋转的。这种定义方式上的不确定性带来了很多实用当中的困难。

欧拉角当中比较常用的一种,便是用“偏航−俯仰−滚转”(yaw-pitch-roll)3个角度来描述一个旋转。它等价于ZYX轴的旋转。假设一个刚体的前方(朝向我们的方向)为X轴,右侧为Y轴,上方为Z轴。那么,ZYX转角相当于把任意旋转分解成以下3个轴上的转角:

  1. 绕物体的Z轴旋转,得到偏航角 yaw;

  2. 旋转之后的Y轴旋转,得到俯仰角 pitch;

  3. 旋转之后的 X 轴旋转,得到滚转角 roll。

此时,可以使用 [r,p,y]T 这样一个三维的向量描述任意旋转。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

欧拉角的一个重大缺点是会碰到万向锁问题(Gimbal Lock ):在俯仰角为 ±90◦时,第一次旋转与第三次旋转将使用同一个轴,使得系统丢失了一个自由度(由 3 次旋转变成了 2 次旋转)。这被称为奇异性问题,只要想用3个实数来表达三维旋转时,都会不可避免地碰到奇异性问题(旋转向量也有奇异性,发生在转角θ超过2Π而产生周期性时)。

由于这种问题,欧拉角不适于插值和迭代,往往只用于人机交互中。我们很少在SLAM程序中直接使用欧拉角表达姿态,同样不会在滤波或优化中使用欧拉角表达旋转,因为它具有奇异性。如果想验证自己的算法是否有错,转换成欧拉角能够帮你快速分辨结果是否正确。

这篇关于【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/427832

相关文章

Qt QWidget实现图片旋转动画

《QtQWidget实现图片旋转动画》这篇文章主要为大家详细介绍了如何使用了Qt和QWidget实现图片旋转动画效果,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、效果展示二、源码分享本例程通过QGraphicsView实现svg格式图片旋转。.hpjavascript

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

C++11第三弹:lambda表达式 | 新的类功能 | 模板的可变参数

🌈个人主页: 南桥几晴秋 🌈C++专栏: 南桥谈C++ 🌈C语言专栏: C语言学习系列 🌈Linux学习专栏: 南桥谈Linux 🌈数据结构学习专栏: 数据结构杂谈 🌈数据库学习专栏: 南桥谈MySQL 🌈Qt学习专栏: 南桥谈Qt 🌈菜鸡代码练习: 练习随想记录 🌈git学习: 南桥谈Git 🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈🌈�

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss