使用Python语言,用最简单的线性回归预测高考录取人数

2023-11-26 02:40

本文主要是介绍使用Python语言,用最简单的线性回归预测高考录取人数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 摘要
  • 相关数据
  • 线性回归模型预测
    • 1. 使用上一年的录取数预测下一年
    • 2. 使用当年的参加考试人数来预测录取人数
    • 3. 参加考试人数和时间的因素相结合
  • 展示

摘要

本文收集了2000年到2023年的高考参加考试人数以及2000年到2022年的高考录取人数,尝试通过这些数据使用最简单的线性回归来预测高考录取人数。

相关数据

年份参加考试人数/万录取人数/万
2000375.0221.0
2001454.0268.0
2002510.0320.0
2003613.0382.0
2004729.0447.0
2005877.0504.0
2006950.0546.0
20071010.0566.0
20081050.0599.0
20091020.0629.0
2010946.0657.0
2011933.0675.0
2012915.0685.0
2013912.0684.0
2014939.0697.0
2015942.0700.0
2016940.0705.0
2017940.0700.0
2018975.0790.99
20191031.0820.0
20201071.0856.0
20211078.01001.32
20221193.01014.53
20231291.0

以列表形式给出数据结构:

[375.0, 454.0, 510.0, 613.0, 729.0, 877.0, 950.0, 1010.0, 1050.0, 1020.0, 946.0, 933.0, 915.0, 912.0, 939.0, 942.0, 940.0, 940.0, 975.0, 1031.0, 1071.0, 1078.0, 1193.0, 1291.0]
[221.0, 268.0, 320.0, 382.0, 447.0, 504.0, 546.0, 566.0, 599.0, 629.0, 657.0, 675.0, 685.0, 684.0, 697.0, 700.0, 705.0, 700.0, 790.99, 820.0, 856.0, 1001.32, 1014.53]

线性回归模型预测

1. 使用上一年的录取数预测下一年

仅仅考虑每年的录取人数,忽略参考人数的影响,使用上一年的录取数预测下一年。

import numpy as np
import matplotlib.pyplot as plt
from pandas import DataFrame
from sklearn.linear_model import LinearRegression# 定义高考参考人数
x1 = np.array([375.0, 454.0, 510.0, 613.0, 729.0, 877.0, 950.0, 1010.0, 1050.0, 1020.0, 946.0, 933.0, 915.0, 912.0, 939.0, 942.0, 940.0, 940.0, 975.0, 1031.0, 1071.0, 1078.0, 1193.0, 1291.0]).reshape(-1, 1)# 定义高考录取人数
x2 = np.array([221.0, 268.0, 320.0, 382.0, 447.0, 504.0, 546.0, 566.0, 599.0, 629.0, 657.0, 675.0, 685.0, 684.0, 697.0, 700.0, 705.0, 700.0, 790.99, 820.0, 856.0, 1001.32, 1014.53]).reshape(-1, 1)# 创建线性回归模型对象
model = LinearRegression()# 训练模型
model.fit(x2[:-1], x2[1:])# 预测第二组数据的最后一个数据
last_x2 = np.array([[x2[-1][0]]])
last_y2 = model.predict(last_x2)
# 设置图表中中文字体正常显示
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.scatter(range(len(x1)), [i[0] for i in x1], label='参加高考人数')
plt.scatter(range(len(x2)), [i[0] for i in x2], label='高考录取人数')
plt.scatter(23, last_y2[0][0], label='预测录取人数')
plt.plot(range(1,len(x1)), [i[0] for i in model.predict(x2)], label='拟合结果')
plt.legend()
plt.text(23-0.5, last_y2[0][0]+20, int(last_y2[0][0]))
plt.savefig('预测1.jpg')
plt.show()
print("预测值为:", last_y2[0][0])

运行结果:
在这里插入图片描述
得出的预测结果是1039。
这种尝试显然不合适,因为忽略了参加考试人数的影响。

2. 使用当年的参加考试人数来预测录取人数

import numpy as np
import matplotlib.pyplot as plt
from pandas import DataFrame
from sklearn.linear_model import LinearRegression# 定义第一组数据
x1 = np.array([375.0, 454.0, 510.0, 613.0, 729.0, 877.0, 950.0, 1010.0, 1050.0, 1020.0, 946.0, 933.0, 915.0, 912.0, 939.0, 942.0, 940.0, 940.0, 975.0, 1031.0, 1071.0, 1078.0, 1193.0, 1291.0]).reshape(-1, 1)# 定义第二组数据
x2 = np.array([221.0, 268.0, 320.0, 382.0, 447.0, 504.0, 546.0, 566.0, 599.0, 629.0, 657.0, 675.0, 685.0, 684.0, 697.0, 700.0, 705.0, 700.0, 790.99, 820.0, 856.0, 1001.32, 1014.53]).reshape(-1, 1)# 创建线性回归模型对象
model = LinearRegression()# 训练模型
model.fit(x1[:-1], x2)# 预测第二组数据的最后一个数据
last_x2 = np.array([[x1[-1][0]]])
last_y2 = model.predict(last_x2)
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.scatter(range(len(x1)), [i[0] for i in x1], label='参加高考人数')
plt.scatter(range(len(x2)), [i[0] for i in x2], label='高考录取人数')
plt.scatter(23, last_y2[0][0], label='预测录取人数')
plt.plot(range(len(x1)), [i[0] for i in model.predict(x1)], label='拟合结果')
plt.legend()
plt.text(23-0.5, last_y2[0][0]+20, int(last_y2[0][0]))
plt.savefig('预测2.jpg')
plt.show()
print("预测值为:", last_y2[0][0])

运行结果:
在这里插入图片描述
得出的预测结果是986。
发现受单变量影响太大,拟合效果不好。

3. 参加考试人数和时间的因素相结合

尝试将参加考试人数和时间的因素相结合,同时进行标准化,消除量纲的影响。

import numpy as np
import matplotlib.pyplot as plt
from pandas import DataFrame
from sklearn.linear_model import LinearRegression# 定义第一组数据
x1 = np.array([375.0, 454.0, 510.0, 613.0, 729.0, 877.0, 950.0, 1010.0, 1050.0, 1020.0, 946.0, 933.0, 915.0, 912.0, 939.0, 942.0, 940.0, 940.0, 975.0, 1031.0, 1071.0, 1078.0, 1193.0, 1291.0]).reshape(-1, 1)
x1 = [[x1[i][0]/50, (i+1)] for i in range(len(x1))] # 数据除以50是为了进行标准化# 定义第二组数据
x2 = np.array([221.0, 268.0, 320.0, 382.0, 447.0, 504.0, 546.0, 566.0, 599.0, 629.0, 657.0, 675.0, 685.0, 684.0, 697.0, 700.0, 705.0, 700.0, 790.99, 820.0, 856.0, 1001.32, 1014.53]).reshape(-1, 1)
x2 = [[x2[i][0]/50] for i in range(len(x2))] # 数据除以50是为了进行标准化# 创建线性回归模型对象
model = LinearRegression()# 训练模型
model.fit(x1[:-1], x2)# 预测第二组数据的最后一个数据
last_x2 = np.array([[1291.0/50, 24]]) # 数据除以50是为了进行标准化
last_y2 = model.predict(last_x2)
plt.scatter(range(len(x1)), [i[0]*50 for i in x1], label='参加高考人数')
plt.scatter(range(len(x2)), [i[0]*50 for i in x2], label='高考录取人数')
plt.scatter(23, last_y2[0][0]*50, label='预测录取人数')
plt.plot(range(len(x1)), [i[0]*50 for i in model.predict(x1)], label='拟合结果')
plt.text(23-0.5, last_y2[0][0]*50+20, int(last_y2[0][0]*50))
plt.savefig('预测3.jpg')
plt.show()
print("预测值为:", last_y2[0][0]*50)

运行结果:
在这里插入图片描述
得出预测结果是1020。
拟合相对较好,且综合了参考人数以及时间的因素,预测结果相对可信。

展示

将所有数据绘制在一张图表中,便于展示。

import numpy as np
import matplotlib.pyplot as plt
from pandas import DataFrame
from sklearn.linear_model import LinearRegressiondata = DataFrame()
data['年份'] = range(2000, 2024)
data['参考人数'] = [375.0, 454.0, 510.0, 613.0, 729.0, 877.0, 950.0, 1010.0, 1050.0, 1020.0, 946.0, 933.0, 915.0, 912.0, 939.0, 942.0, 940.0, 940.0, 975.0, 1031.0, 1071.0, 1078.0, 1193.0, 1291.0]a = [221.0, 268.0, 320.0, 382.0, 447.0, 504.0, 546.0, 566.0, 599.0, 629.0, 657.0, 675.0, 685.0, 684.0, 697.0, 700.0, 705.0, 700.0, 790.99, 820.0, 856.0, 1001.32, 1014.53]
a.append(1020.4566124819598) # 加入预测结果
data['录取人数'] = a
data['录取人数'] = [float(i) for i in data['录取人数']]
data['参考人数'] = [float(i) for i in data['参考人数']]plt.xticks(rotation=45)
plt.title('高考数据折线图')
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
plt.xlabel('年份')
plt.ylabel('人数/万')
plt.plot(data['年份'], data['参考人数'], marker='o', markersize=3, label='参加高考人数')
for i, j in zip(data['年份'][1::2], data['参考人数'][1::2]):plt.text(i-0.5, j+20, int(j))
plt.plot(data['年份'][:-1], data['录取人数'][:-1], 'x-', markersize=3, label='高考录取人数')
plt.plot(data['年份'][-2:], data['录取人数'][-2:], 'x--', markersize=3, label='预测录取人数')
for i, j in zip(data['年份'][1::2], data['录取人数'][1::2]):plt.text(i-0.5, j+20, int(j))plt.legend()
plt.savefig('高考数据折线图.jpg')
plt.show()

运行结果:
在这里插入图片描述

这篇关于使用Python语言,用最简单的线性回归预测高考录取人数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/425001

相关文章

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空