CTA-GAN:基于生成对抗性网络的主动脉和颈动脉非集中CT血管造影 CT到增强CT的合成技术

本文主要是介绍CTA-GAN:基于生成对抗性网络的主动脉和颈动脉非集中CT血管造影 CT到增强CT的合成技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Generative Adversarial Network–based Noncontrast CT Angiography for Aorta and Carotid Arteries

  • 基于生成对抗性网络的主动脉和颈动脉非集中CT血管造影
    • 背景
    • 贡献
    • 实验
    • 方法
    • 损失函数
    • Thinking

基于生成对抗性网络的主动脉和颈动脉非集中CT血管造影

https://github.com/ying-fu/CTA-GAN
Radiology 2023

背景

碘造影剂(ICAs)广泛用于CT血管造影术(CTA),可能会对人体产生不良影响,而且使用耗时且成本高昂。研究用平扫CT合成造影剂CT并评价生成的效果很有意义。CTA——Syn-CTA

  • 难点:传统的深度学习模型不能充分解决成对未对准图像的映射翻译问题。此外,先前的医学图像翻译研究集中在单个解剖位置,而临床诊断经常在多个位置进行(14,15)。

贡献

  • 本文:开发一种基于生成对抗性网络(GAN)的CTA成像模型(16-21),以合成独立于ICAs的高质量CTA样图像,并评估使用这些合成CTA(Syn-CTA)图像辅助临床诊断的可行性。使用内部和外部测试数据从定量指标视觉质量和血管疾病诊断准确性方面评估Syn-CTA图像

实验

  • 数据集:收集了17-22年颈部和腹部的成对的CT和CTA图像,1749名患者,1137训练,400验证,212测试,外部验证42名。
  • 数据处理:每个NCCT和CTA扫描被重采样到0.67x0.67x1.25的体积中,由75-490各切片组成,512x512分辨率,CTA造影剂浓度370mg/ml,注射速率4.5ml/s,将-2000-2095的像素值标准化到-1-1,排除手动检查后图像质量较差的扫描。
  • Patient Characteristics(患者特征),在1833名符合条件的患者中,84名图像质量较差的患者被排除在外,1749名患者(中位年龄,60岁[IQR,50-68岁];1057名[60.4%]男性患者和692名[39.6%]女性患者)被纳入分析。1137名患者的CT扫描用于模型训练;来自400名患者的扫描用于模型开发验证;212名患者的扫描用于模型测试(图1)。外部独立验证集包括42名患者(中位年龄67岁[IQR,59–74岁];37名[88.1%]男性患者和5名[11.9%]女性患者)。
  • 评估方法:Quantitative Evaluation(定量评价),正态平均绝对误差(NMAE)、峰值信噪比(PSNR)、结构相似性指数测量(SSIM
  • Visual Quality Evaluation(视觉质量评估),具有10年经验的专家,独立评估了CTA和Syn-CTA图像的图像质量。任何分歧都通过协商一致的方式解决。放射科医生使用主观三点量表(视觉质量评分)(25,26)评估Syn-CTA和真实CTA扫描的图像质量1、质量差;2、质量合格;3、质量好;具体而言,图像质量评估包括血管壁清晰度、管腔边缘清晰度和管腔壁对比度(附录S1,图S1)。
  • Diagnostic Evaluation(诊断评估),对每次扫描的Syn-CTA图像和真实CTA图像进行匿名化,然后将其随机并按序列号呈现给进行独立阅读视觉质量评估的同两名放射科医生。基于每次扫描的血管诊断(动脉瘤、夹层、动脉粥样硬化或健康动脉)由两名放射科医生确定。通过一致阅读解决任何诊断分歧(附录S1)。从真实的CTA图像中读取的血管诊断被视为基本事实。
    在这里插入图片描述
    人工评价:Syn-CTA测试集中的高质量分数(分数=3)的比率均大于90%,高质量分数的总体比率为95%
    在这里插入图片描述
    在这里插入图片描述

方法

在这里插入图片描述
在这里插入图片描述
论文中对方法描述不多,以下是从源代码中简化的训练步骤伪代码

# real_A2是CT,real_B2是Syn_CTA,
# NetG_A2B是生成器,R_A是校准器,spatial_transform是进行采样的一个配准场不是模型,
# netD_B是判别器,target_real = Variable(Tensor(1,1).fill_(1.0), requires_grad=False),
# target_fake = Variable(Tensor(1,1).fill_(0.0), requires_grad=Falseoptimizer_R_A.zero_grad()
optimizer_G.zero_grad()								# 只更新生成器和校准器
fake_B = netG_A2B(real_A2)  						# CT生成的Syn_CTA,fake_B
Trans = R_A(fake_B, real_B2)						# fake_B和real_B校准得到Trans
SysRegist_A2B = spatial_transform(fake_B, Trans)	# fake_B和Trans,配准得到,SysRegist_A2B
pred_fake0 = netD_B(fake_B)							# fake_B输入到判别器得到pred_fake0SM_loss = smoothing_loss(Trans)
SR_loss = L1_loss(SysRegist_A2B, real_B2)			# 配准后的生成图和real_B要长得像
adv_loss = MSE_loss(pred_fake0, target_real)  		# 对抗,fake_B的pred_fake0和1的MSElossloss = SM_loss + SR_loss + adv_loss					# 总损失
loss.backward()										# 梯度回传
optimizer_R_A.step()								# 更新R_A和G
optimizer_G.step()optimizer_D_B.zero_grad()							# 只更新判别器
with torch.no_grad():fake_B = netG_A2B(real_A2)  					# 生成器不更新权重
pred_fake0 = netD_B(fake_B)							# 再算一次pred_fake0
real_BB2 = copy.deepcopy(real_B2)			
pred_real = netD_B(real_BB2)						# 判别real_B得到pred_real
loss_D_B = MSE_loss(pred_fake0, target_fake) 		# 对抗,pred_fake0和0,pred_real和1+ MSE_loss(pred_real, target_real)	
loss_D_B.backward()
optimizer_D_B.step()								# 更新判别器

损失函数

配准后的图像和源图像的L1 loss,对抗loss

Thinking

输入是未配准的成对CT-SynCTA影像,先用CT影像生成SynCTA影像,再对SynCTA影像进行配准,再通过判别器,判别生成的影像和原始SynCTA影像。最终合成配准了的SynCTA影像。

这篇关于CTA-GAN:基于生成对抗性网络的主动脉和颈动脉非集中CT血管造影 CT到增强CT的合成技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/423952

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp