去年火热的共享单车为何有的爆火,有的直接倒闭呢?Python挖掘一下他们的数据。

本文主要是介绍去年火热的共享单车为何有的爆火,有的直接倒闭呢?Python挖掘一下他们的数据。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

     去年还是前年吧,那时候共享单车首先出来的好像是红色的吧,是摩拜吧,如果我没记错的话,自从摩拜火了之后,后续又出现了很多颜色的共享单车,简直密密麻麻的,我还记得不知道是哪个公司的,我的99押金都没退出来,那家公司就没了,押金也就没了。但是发展到现在的话好像就一个小溜共享电动车和支付宝的哈罗还存在吧,其他的基本没见过了。今天咱们来好好的分析一下!

                          

对了,还有一件尤为重要的事情,在这里和大家讲一下,恭喜EDG痛失亚军,喜提冠军,又为咱们LPL拿下一个冠军,到现在也是咱们中国的第三个冠军吧,EDG牛*

     ​​​

数据集简介

关于共享单车数据集

自行车共享系统是传统自行车租赁的新一代,从注册会员、租赁到归还的整个过程都是自动化的。通过这些系统,用户可以很容易地从一个特定的位置租用自行车,并在另一个位置归还。目前,全球大约有500多个共享单车项目,这些项目由50多万辆自行车组成。今天,由于它们在交通、环境和健康问题上的重要作用,人们对这些系统产生了极大的兴趣。

除了自行车共享系统在现实世界的有趣应用之外,众多研究者们对这些系统所产生的数据产生浓厚的兴趣。与其他运输服务(如公共汽车或地铁)不同,共享自行车使用的持续时间、出发时间和到达位置都明确地记录在系统中。这一功能将自行车共享系统变成了一个虚拟传感器网络,可用于感知城市中的流动性。因此,通过监测这些数据,预计可以检测到城市中的大多数重要事件。

今天我们就运用这些数据集,挖掘出蕴含在其中的有效的信息。接下来从探索数据属性,清洗数据,到模型开发,一起来学习,共同进步。

注意,该数据集是国外共享单车数据集,并非国内的共享单车数据集。但不影响我们学习数据挖掘相关知识和技术。数据集获取可以关注公众号:Python源码   回复EDG牛逼  获取

属性信息

hour.csv和 day.csv都有以下字段,day.csv中没有 hr 字段

  • instant:记录索引

  • dteday :日期

  • season :季节 (1:春天, 2:夏天, 3:秋天, 4:冬天)

  • yr :年份 (0:2011, 1:2012)

  • mnth:月份 ( 1 to 12)

  • hr:小时 (0 to 23)

  • holiday :是否是假期

  • weekday :星期几

  • workingday :工作日,如果日既不是周末也不是假日,则为1,否则为0。

  • weathersit

    • 1:晴,少云,部分云,无云

    • 2:薄雾+多云,薄雾+碎云,薄雾+少量云,薄雾

    • 3:小雪,小雨+雷暴+散云,小雨+散云

    • 4:大雨+冰板+雷暴+雾,雪+雾

  • temp:标准化温度数据,单位为摄氏度。这些值是通过(t-t_min)/(t_max-t_min, t_min=-8, t_max=+39(仅在小时范围内)得到的

  • atemp:以摄氏度为单位的正常体感温度。这些值是通过(t-t_min)/(t_max-t_min), t_min=-16, t_max=+50(仅在小时范围内)得到的

  • hum:标准化湿度。这些值被分割到100(最大值)

  • windspeed:归一化的风速数据。这些值被分割到 67 (最大值)

  • casual:注销用户数量

  • registered:已注册用户数量

  • cnt:出租自行车总数,包括注销和注册自行车

前期准备

导入模块

import seaborn as sns
import matplotlib.pyplot as plt
from prettytable import PrettyTable
import numpy as np  
import pandas as pd  
from sklearn.model_selection import RandomizedSearchCV
from sklearn.metrics import mean_squared_error, mean_absolute_error, mean_squared_log_error
from sklearn.linear_model import Lasso, ElasticNet, Ridge, SGDRegressor
from sklearn.svm import SVR, NuSVR
from sklearn.ensemble import BaggingRegressor, RandomForestRegressor
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cluster import KMeans
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LinearRegression
import random
%matplotlib inlinerandom.seed(100)

定义数据获取函数

class Dataloader():'''自行车共享数据集数据加载器。'''def __init__(self, csv_path):''' 初始化自行车共享数据集数据加载器。param: csv_path {str} -- 自行车共享数据集CSV文件的路径。'''self.csv_path = csv_pathself.data = pd.read_csv(self.csv_path)# Shuffleself.data.sample(frac=1.0, replace=True, random_state=1)def getHeader(self):''' 获取共享单车CSV文件的列名。return: [list of str]--CSV文件的列名'''return list(self.data.columns.values)def getData(self):'''   划分训练、验证和测试集返回: pandas DataFrames-- 划分后的不同数据集pandas DataFrames'''# 将数据按60:20:20的比例划分为训练、验证和测试集split_train = int(60 / 100 * len(self.data)) split_val = int(80 / 100 * len(self.data)) train = self.data[:split_train]val = self.data[split_train:split_val]test = self.data[split_val:]return train, val,  testdef getFullData(self):''' 在一个DataFrames中获取所有数据。return: pandas DataFrames-- 完整的共享数据集数据'''return self.data

描述性分析

划分训练、验证和测试数据集

dataloader = Dataloader('../data/bike/hour.csv')
train, val, test = dataloader.getData()
fullData = dataloader.getFullData()category_features = ['season', 'holiday', 'mnth', 'hr',   'weekday', 'workingday', 'weathersit']
number_features = ['temp', 'atemp', 'hum', 'windspeed']features= category_features + number_features
target = ['cnt']

features
['season', 'holiday', 'mnth', 'hr', 'weekday', 'workingday', 'weathersit', 'temp', 'atemp', 'hum', 'windspeed']

获取DataFrame的列名:

print(list(fullData.columns))
['instant', 'dteday', 'season', 'yr', 'mnth','hr', 'holiday', 'weekday', 'workingday', 'weathersit', 'temp', 'atemp', 'hum', 'windspeed', 'casual', 'registered', 'cnt']

打印数据集的前五个示例来探索数据:

fullData.head(5)

​​获取每列的数据统计信息:

fullData[number_features].describe()

​​

for col in category_features:fullData[col] = fullData[col].astype('category')
fullData[category_features].describe()

​​

缺失值分析

检查数据中的NULL值:

print(fullData.isnull().any())

instant       False
dteday        False
season        False
yr            False
mnth          False
hr            False
holiday       False
weekday       False
workingday    False
weathersit    False
temp          False
atemp         False
hum           False
windspeed     False
casual        False
registered    False
cnt           False
dtype:bool

异常值分析

箱形图

sns.set(font_scale=1.0)
fig, axes = plt.subplots(nrows=3,ncols=2)
fig.set_size_inches(15, 15)
sns.boxplot(data=train,y="cnt",orient="v",ax=axes[0][0])
sns.boxplot(data=train,y="cnt",x="mnth",orient="v",ax=axes[0][1])
sns.boxplot(data=train,y="cnt",x="weathersit",orient="v",ax=axes[1][0])
sns.boxplot(data=train,y="cnt",x="workingday",orient="v",ax=axes[1][1])
sns.boxplot(data=train,y="cnt",x="hr",orient="v",ax=axes[2][0])
sns.boxplot(data=train,y="cnt",x="temp",orient="v",ax=axes[2][1])axes[0][0].set(ylabel='Count',title="Box Plot On Count")
axes[0][1].set(xlabel='Month', ylabel='Count',title="Box Plot On Count Across Months")
axes[1][0].set(xlabel='Weather Situation', ylabel='Count',title="Box Plot On Count Across Weather Situations")
axes[1][1].set(xlabel='Working Day', ylabel='Count',title="Box Plot On Count Across Working Day")
axes[2][0].set(xlabel='Hour Of The Day', ylabel='Count',title="Box Plot On Count Across Hour Of The Day")
axes[2][1].set(xlabel='Temperature', ylabel='Count',title="Box Plot On Count Across Temperature")for tick in axes[2][1].get_xticklabels():tick.set_rotation(90)

​​

解析: 工作日和节假日箱形图表明,正常工作日出租的自行车比周末或节假日多。每小时的箱形图显示当地早上8点最大,下午5点最大,这表明大多数自行车租赁服务的用户使用自行车上班或上学。另一个重要因素似乎是温度:较高的温度导致自行车租赁数量增加,而较低的温度不仅降低了平均租赁数量,而且在数据中显示出更多的异常值。

从数据中去除异常值

sns.distplot(train[target[-1]]);

​​

计数值的分布图显示,计数值不符合正态分布。我们将使用中位数和四分位区间(IQR)来识别和去除数据中的异常值。(另一种方法是将目标值转换为正态分布,并使用平均值和标准偏差。)

print("带有异常值的列车集合中的样本: {}".format(len(train)))
q1 = train.cnt.quantile(0.25)
q3 = train.cnt.quantile(0.75)
iqr = q3 - q1
lower_bound = q1 -(1.5 * iqr) 
upper_bound = q3 +(1.5 * iqr) 
train_preprocessed = train.loc[(train.cnt >= lower_bound) & (train.cnt <= upper_bound)]
print("没有异常值的训练样本集: {}".format(len(train_preprocessed)))
sns.distplot(train_preprocessed.cnt);

带有异常值的列车集合中的样本:10427
没有异常值的训练样本集:10151​​​

相关分析

matrix = train[number_features + target].corr()
heat = np.array(matrix)
heat[np.tril_indices_from(heat)] = False
fig,ax= plt.subplots()
fig.set_size_inches(15,8)
sns.set(font_scale=1.0)
sns.heatmap(matrix, mask=heat,vmax=1.0, vmin=0.0, square=True,annot=True, cmap="Reds")

​​

结论: 在描述性分析总结如下几点:

  • 变量"Casual"和"registered"包含关于共享自行车计数直接信息,而如果将这些信息用于预测(数据泄漏)。因此,它们不在特征集中考虑。

  • 变量"temp"和"atemp"是高度相关的。为了降低预测模型的维数,可以删除特征"atemp"。

  • 变量"hr"和"temp"似乎是预测自行车共享数量的贡献较大的特征。

features.remove('atemp')

评价指标概述

Mean Squared Error (MSE)

​​

Root Mean Squared Logarithmic Error (RMSLE)

​​

R^2 Score

​​

模型选择

所呈现的问题的特点是:

  • 回归:目标变量是一个连续型数值。

  • 数据集小:小于100K的样本量。

  • 少数特征应该是重要的:相关矩阵表明少数特征包含预测目标变量的信息。

这些特点给予了岭回归、支持向量回归、集成回归、随机森林回归等方法大展身手的好机会。记住,关注公众号:Python源码   回复EDG牛逼  领取完整代码和数据集哦!

这篇关于去年火热的共享单车为何有的爆火,有的直接倒闭呢?Python挖掘一下他们的数据。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/423633

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Linux samba共享慢的原因及解决方案

《Linuxsamba共享慢的原因及解决方案》:本文主要介绍Linuxsamba共享慢的原因及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux samba共享慢原因及解决问题表现原因解决办法总结Linandroidux samba共享慢原因及解决

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专