谷歌发布Contact Center AI,智能客服真的能够不再“智障”了吗?

2023-11-24 10:10

本文主要是介绍谷歌发布Contact Center AI,智能客服真的能够不再“智障”了吗?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文 | 柯鸣

来源 | 智能相对论(aixdlun)

今天凌晨,Google又有了大动作。

Google Cloud Next 18大会上,李飞飞于李佳组合再次联手推出了一个新的产品。这是谷歌推出的第一个Solution Product (行业解决方案产品)——Contact Center AI。其集虚拟助理、智能信息发掘和情感分析等功能于一身,帮助Contact Center 的工作人员更有效的解决问题和用户提升体验。

 

就在Google Cloud Next 18大会开始前,“佳飞”组合更是提前发布朋友圈,说明这会是两人合作的又一新里程碑。

 

Contact Center AI是如何智能的?

 

早在2017年11月,Google就已推出Dialogflow企业版,这款软件是用于构建会话代理的综合开发套件,有着超60万的业内开发人员用户。而Contact Center AI的出现,为这一套件再次增添了新内容。谷歌通过DeepMind的WaveNet和用于电话集成的Dialogflow电话网关添加了新功能,如文本到语音转换功能。

 

 

所有功能都致力于使用负责任的、以人为本的AI应用方式,即Contact Center AI,谷歌认为它可能提升用户的全程服务体验。

 

而Contact Center AI的任务,一是替人类客服接电话,二是帮人类客服更好地接电话。

 

Contact Center AI似乎与Duplex的模式非常相似。后者是谷歌在今年早些时候的I/O大会上推出的,可以为人们提供自己的对话人工智能助理,以便进行预约,或者通过电话完成其他日常任务。其实,Contact Center AI和Duplex是两款截然不同的产品,它们共用一些底层组件,但技术堆栈和整体目标却截然不同。

 

Contact Center AI的运作方式是当用户给客服中心拨打电话时,首先由虚拟助理接起,其能够根据用户需求完成与用户之间的复杂多轮对话,并独立完成一些任务,而如若指令超出AI处理范围,其将能够转接至人类客服,保证效率的同时也完善用户体验。

 

这种情况下,AI转变为支持功能,由此Contact Center AI为人类客服代表提供相关信息。利用Dialogflow的知识连接器,可以从公司的知识库中找到相关度最高的知识性文章,确保能够以近乎实时的方式为客户提供最佳解决方案。

 

Google Cloud Next 18大会上,谷歌以电商的退换货场景作为展示案例向用户展现目前客服AI的强大能力。效果显示,这个接电话的AI可比那个“话费充值请按1,人工服务请按0”的“人工智障”可智能的多。

 

在现场的视频中,Contact Center AI可以与人类用户完全进行自然语言交流,这与Duplex的形式十分相似,AI可以根据订单信息猜测人类用户的大概意图,在人类用户提出“退货”的时候,能正确理解人类向干什么,还能给人发送退货信息的邮件。

 

更厉害的是,它接电话还接出了“One More Thing”:问人类要不要找eBay的时尚专家帮选一下尺码。于是,就到了人类出场的时刻。

 

当然,这个人类,也是AI分析了用户之后,挑选出来的。

 

当人类介入之后,AI的工作并没有停止,其能够实时监测人类客服和用户的对话,并实现文本转换,基于Agent Assist系统,能从公司的知识库中提取最关键的文档,为人类客服提供对话相关的信息,还会列出一些建议问题。

 

这个解决方案除了能够作为AI来电客服外,还能支持更多元化的交换,比如电话、信息,甚至以后AI客服进行视频交流也有可能。

 

我们距离“不再智障”的智能客服还有多远?

 

对于智能客服,用户一直都是“批评多于褒奖”,究其原因是在于人们对于AI客服的期待很高,而AI客服在实际应用中的拙劣表现让许多用户大失所望。

 

随着移动互联网的愈来愈热,企业开始拓展APP、微信多新型轻渠道,通过人工参与粘度低来维护低成本,同时随着AI的到来,人工智能似乎为这种繁琐而简单的工作提供了一个很好的取代解决方案,因此入局企业蜂拥而至,但是发展至今,智能相对论(aixdlun)分析师柯鸣认为,我们离“不再智障”的智能客服依然有一定距离,其发展仍然存在着显而易见的痛点。

 

  1. “鹦鹉学舌”般的深度学习能力

 

“鹦鹉学舌”是借由人类语言的模仿行为,其类似于当前由数据驱动的AI。“乌鸦喝水”则是一个完全的自主行为,其含括了感知、认知、推理、学习和执行,这是智能客服朝想象力、创造力更高层次的进阶。

 

但是,目前的深度学习模式都只是“鹦鹉学舌”而已。智能客服领域的深度学习主要包括业务上和技术上的学习。业务上一是企业知识的补充或更新一般都是在新政策新业务需求非常明确的情况下才会做进一步梳理和更新,管理流程比较复杂,操作周期较长;另外一个就是客户的问题有可能会超过知识库回答的范围,此时系统就无法给出准确的答案。这使得AI进化的能力十分缓慢,有时候会存在答非所问等情况。

 

而在技术方面,深度学习作为智能客服系统的核心算法,目前大多数智能客服系统在算法的优化更新方面的速度非常缓慢,有些甚至几乎就不更新,根本没有考虑到随着需求变化去进行实现系统自身算法参数上的调整以便及时优化自身推荐机制、提高推荐准确率。

 

2.尚需提高的自然语言处理

 

目前企业所用的智能客服系统普遍用于业务解答,系统的开发模式主要基于企业的知识库,采用关键字匹配来推荐答案,这种方式虽然直接,但其实没有很好地考虑到客户的提问习惯。

 

当下的智能客服语音识别主要基于语音识别的基本架构、声学模型、语言模型并进行解码,而真正能够根据客户需求和话术进行个性化适配的智能客服少之又少。其实,不同用户的性格、特点、知识层次都不相同,如果有预设的用户画像,那出现话术误读的可能性也会大大减小。

目前语音识别的通常模式

 

对于普通客户而言,发问一般以相对口语化的方式进行,而系统则一般以结构化的语言去读取,在客户自然语言和计算机结构化语言之间必然需要一定的机制去做好翻译工作,例如客户的口语化提问方式、上下文智能关联等,但目前大多数智能客服处理这类问题的能力并不强,客户提问的内容一旦比较复杂或表达不完整,系统就无法完整、正确识别客户问题,导致目前一些智能客服应用在实际使用过程中推荐答案的准确率并不高,从而影响客户的使用体验。

 

3.难以提高的用户接受度

 

目前,我国整个客服市场规模已经超过千亿。而在线客服最为使用率最高的客服系统,达到了73.9%,呼叫中心使用率50.7%,但是,其中智能客服的使用率仅为31.5%。

 

用户接受度直接影响着产品的应用范围。对于用户接受度低的原因,无疑是两个方面。首先是用户自身使用习惯,以笔者而言,许多的用户并不喜欢智能客服机械式的回答,而是更喜欢与人工智能一对一的谈话,虽然效率可能不及智能客服,但是在特定问题的解决上,人工客服能够提出更多个性化的建议。另一方面,目前市面上的智能客服更多的是“噱头大于功效”,其糟糕的使用体验,使得用户不得不放弃它。

 

当然,在业界人士看来,智能客服目前仍然处于萌芽发展期,但作为“风口”行业,其发展前景是大有可期的。

 

总的来说,Contact Center AI的出现为当前的智能客服领域打了一针“强心剂”,谷歌也开始与Cisco、Five9、Twilio、Appian等企业合作落地Contact Center AI的具体产品。当然,许多情况下概念永远要比实际应用强大的多,在具体应用中能够表现如何,这还需要应用企业和用户们来亲自检验。

 

智能相对论(微信id:aixdlun):深挖人工智能这口井,评出咸淡,讲出黑白,道出深浅。重点关注领域:AI+医疗、机器人、智能驾驶、AI+硬件、物联网、AI+金融、AI+安全、AR/VR、开发者以及背后的芯片、算法、人机交互等。

这篇关于谷歌发布Contact Center AI,智能客服真的能够不再“智障”了吗?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/421733

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

高效+灵活,万博智云全球发布AWS无代理跨云容灾方案!

摘要 近日,万博智云推出了基于AWS的无代理跨云容灾解决方案,并与拉丁美洲,中东,亚洲的合作伙伴面向全球开展了联合发布。这一方案以AWS应用环境为基础,将HyperBDR平台的高效、灵活和成本效益优势与无代理功能相结合,为全球企业带来实现了更便捷、经济的数据保护。 一、全球联合发布 9月2日,万博智云CEO Michael Wong在线上平台发布AWS无代理跨云容灾解决方案的阐述视频,介绍了

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

AI hospital 论文Idea

一、Benchmarking Large Language Models on Communicative Medical Coaching: A Dataset and a Novel System论文地址含代码 大多数现有模型和工具主要迎合以患者为中心的服务。这项工作深入探讨了LLMs在提高医疗专业人员的沟通能力。目标是构建一个模拟实践环境,人类医生(即医学学习者)可以在其中与患者代理进行医学