futex-based pthread_cond 源代码分析

2023-11-23 20:10

本文主要是介绍futex-based pthread_cond 源代码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

pthread_cond的实现使用了几个futex来协同进行同步,以及如何来实现的。

假定你已经明白 futex,futex-requeue,以及 pthread lowlevellock。

《linux 内核的futex》

《linux 内核的futex - requeue 以及 requeue-pi》

《pthread的lowlevellock》

 

pthread_cond一共使用了4个futex,其中包括1个外部的futex,是它所从属的Mutex。

pthread_cond自身包含的3个futex:

__lock:是一个lowlevellock用于pthread_cond原语操作在用户空间的临界区保护(或同步),同时保护pthread_cond的其它变量。

__futex:这是我们所熟知的条件变量阻塞队列。

__nwaiters:用作变量监视器,pthread_cond在destroy使用来同步所有没结束的wait。

这里可以看到futex除了锁之外另一种用法,用户空间可以阻塞在__nwaiters变量上,以Observer角色等待修改的一方发出更新的信号。pthread_cond_destroy会一直阻塞/唤醒监视__nwaiters,直到__nwaiters等于0为止。

 

pthread_cond_wait就是先后阻塞在__futex和__mutex.__lock两个futex队列进行等待,也就是futex_requeue系统调用中的futex1与futex2。pthread_cond_broadcast使用futex_requeue将__futex上的阻塞线程requeue到__mutex.__lock的等待队列上。

 

__total_seq 是 cond_wait调用的次序号。
__nwaiters 是 阻塞中的cond_wait的计数。
__wakeup_seq 是 发起唤醒的次序号,包括cond_signal 以及 cond_wait的timeout。
__broadcast_seq 是 cond_broadcast调用的次序号。
__woken_seq 是 cond_wait从阻塞中被唤醒的次序号。
__futex 是发起wakeup或wait的动作次序号。

规则:

__futex 在 __total_seq 和 __total_seq * 2 之间推进。__futex 为 __total_seq 和 __wakeup_seq 之和。

__total_seq 先于 __wakeup_seq 向前推进。每次wait调用使__total_seq向前推进1。后随的wakeup才能使__wakeup_seq向前推进。

__wakeup_seq 先于 __woken_seq 向前推进。wait被唤醒后将__woken_seq向前推进1,结束一次wait。

__broadcast_seq,独立的调用次序。每次broadcast,都会将__wakeup_seq,__wokenup_seq,以及__futex平衡,根据 __total_seq。 

__nwaiters 未结束的 wait 调用,destroy 必须监视这个值,同步到这个值等于0才能安全进行销毁。

只有当__total_seq 不等于 __wakeup_seq 时,才能进行 signal 或 broadcast 。

 


当wait发现__futex这个参考次序号有变动,回到用户空间去调查情况:

1. 发现__wakeup_seq次序号有变动,即表明此时有signal调用,就可以与signal所唤醒的waiter进行竞争,竞争同步在用户空间临界区。如果__wakeup_seq != __woken_seq表明自己可以获得这次通行,如果__wakeup_seq == __woken_seq表示这次通行已经被某个waiter拔得头筹,只能决定再进内核排队。
2. 发现__broadcast_seq次序号有变动,即表明自身正包含在broadcast当中(自己修改的__total_seq,被broadcast采纳),可以不再进入内核排队,而直接获得通行。

wait都是三心两意的,一发现__futex有推进,就先打消排队的意愿,怀着被broadcast选中或幸运抢占到一次signal带来的机会,转头回到用户空间张望一下,没戏才失望地再次进入内核排队,但在排队前还是不死心。

 

下面来看pthread_cond_wait,pthread_cond_signal,以及pthread_cond_broadcast是如何在用户空间临界区同步的:

红色框:__lock保护的用户空间临界区。

紫色框:futex系统调用。

 这里可以看到signal是全过程排他(mutual exclusion)进行的。而wait和broadcast则是用户空间和内核(系统调用)分开进行临界区同步的,它们在用户空间的代码只在用户空间的临界区同步,系统调用可以并发进行,当然也不是完全并发,在内核中系统调用的执行还是会同步进行的。换个说法,系统调用并不阻塞其它线程在用户空间在代码,一些线程阻塞在用户空间的临界区,不影响另一些线程去进行系统调用。

broadcast在唤醒线程时,是不会阻塞其它线程去调用wait的。但是signal 即使进入内核去唤醒线程时,也得阻塞其它线程去调用condvar的函数。

 

broadcast 与 broadcast 并发:

broadcast与broadcast同时调用,同步在用户空间临界区次序后面的broadcast,因为__total_seq == __wakeup_seq而退出,只有同步在用户临界区的第一个broadcast会继续单独执行。

 

signal 与 wait 和 broadcast 并发:

当signal调用时,可能有前面的wait或broadcast刚进入内核,但在signal结束之前,不允许任何用户空间的调用进入临界区。这情况下,前面的wait必须回到用户空间重新进入临界区,在signal调用完全结束之后,才能再次进入内核。

a. signal调用在broadcast执行期间,signal会因为__total_seq == __wakeup_seq而退出。
b. broadcast调用在signal执行期间,只能阻塞在用户空间临界区,等待signal调用结束。
c. signal调用时,前面已经有wait在执行,signal会将未能在内核临界区排队的wait全部延后,原理是,wait在内核临界区发现futex有变,即表明用户空间层有变动,必须先回到用户空间,延后次序再次进入内核。
d. wait调用在signal执行期间,wait只能阻塞在用户空间临界区,等待signal调用结束。

 

broadcast 与 wait 并发:

broadcast与wait同时调用,wait都会回到用户空间,检查自身是否包含在本次broadcast中,同步在用户空间临界区,先于broadcast的wait被包含在broadcast,后面的wait则排除在外。包含在本次broadcast中的wait则可以不用在内核排队而直接获得通行。

 

其它同步或锁的还有

《linux 内核的spinlock如何实现排队》

《linux 内核的另一个自旋锁 - 读写锁》

《linux 内核的各种futex功能》

《linux 内核的rt_mutex (realtime互斥体)》

《linux 内核的futex pi-support,即pi-futex使用rt_mutex委托》

《linux 内核的rt_mutex 锁操作实现的临界区》

《phtread_mutex 组合》

《ACE框架 同步原语设计》

 

转载于:https://www.cnblogs.com/bbqzsl/p/6814031.html

这篇关于futex-based pthread_cond 源代码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/420439

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

PostgreSQL核心功能特性与使用领域及场景分析

PostgreSQL有什么优点? 开源和免费 PostgreSQL是一个开源的数据库管理系统,可以免费使用和修改。这降低了企业的成本,并为开发者提供了一个活跃的社区和丰富的资源。 高度兼容 PostgreSQL支持多种操作系统(如Linux、Windows、macOS等)和编程语言(如C、C++、Java、Python、Ruby等),并提供了多种接口(如JDBC、ODBC、ADO.NET等