从Alarm看Android上层UI到内核代码的流程分析

2023-11-23 18:08

本文主要是介绍从Alarm看Android上层UI到内核代码的流程分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Alarm 调用流程,alarm的流程实现了从上层应用一直到下面driver的调用流程,下面简单阐述:

AlarmManager里的闹铃类型:

public static final int RTC_WAKEUP = 0;
//当系统进入睡眠状态时,这种类型闹铃会唤醒系统,该闹铃所用时间是绝对时间,是UTC时间
public static final int RTC = 1;
//当系统进入睡眠状态时,这种类型闹铃不会唤醒系统,直到系统下次被唤醒才传递它,该闹铃所用时间是绝对时间,是UTC时间
public static final int ELAPSED_REALTIME_WAKEUP = 2;
//当系统进入睡眠状态时,这种类型闹铃会唤醒系统,该闹铃所用时间是相对时间,是从系统启动后开始计时的,包括睡眠时间
public static final int ELAPSED_REALTIME = 3;
//当系统进入睡眠状态时,这种类型闹铃不会唤醒系统,直到系统下次被唤醒才传递它,该闹铃所用时间是相对时间,是从系统启动后开始计时的,包括睡眠时间
public static final int POWER_OFF_WAKEUP = 5;
//能唤醒系统,它是一种关机闹铃,就是在关机状态下也可以唤醒系统。使用同RTC类型


涉及代码;
./packages/apps/DeskClock/src/com/android/deskclock/Alarms.java
./frameworks/base/core/java/android/app/AlarmManager.java
./frameworks/base/services/java/com/android/server/AlarmManagerService.java
./frameworks/base/services/jni/com_android_server_AlarmManagerService.cpp
./kernel/kernel/drivers/rtc/alarm-dev.c
./kernel/kernel/include/linux/android_alarm.h
./kernel/kernel/drivers/rtc/alarm.c
./kernel/kernel/drivers/rtc/interface.c
./kernel/kernel/drivers/rtc/rtc-pcf8563.c


./packages/apps/DeskClock/src/com/android/deskclock/AlarmReceiver.java


./kernel/arch/arm/configs/mmp2_android_defconfig
./kernel/kernel/kernel/.config


点击Clock 应用程序,然后设置新闹钟,会调到 Alarms.java 里面的
public static long setAlarm(Context context, Alarm alarm) {
....
setNextAlert(context);
....
}
然后这里面也会调用到
public static void setNextAlert(final Context context) {
if (!enableSnoozeAlert(context)) {
Alarm alarm = calculateNextAlert(context); //new 一个新的alarm
if (alarm != null) {
enableAlert(context, alarm, alarm.time);
} else {
disableAlert(context);
}
}
}
然后继续调用到
private static void enableAlert(Context context, final Alarm alarm, final long atTimeInMillis) {
.......
am.set(AlarmManager.RTC_WAKEUP, atTimeInMillis, sender); //这里是RTC_WAKEUP, 这就保证了即使系统睡眠了,都能唤醒,闹钟工作(android平台关机闹钟好像不行)
.....
}

然后就调用到了AlarmManager.java 里面方法
public void set(int type, long triggerAtTime, PendingIntent operation) {
try {
mService.set(type, triggerAtTime, operation);
} catch (RemoteException ex) {
}
}

然后就调用到了AlarmManagerService.java 里面方法
public void set(int type, long triggerAtTime, PendingIntent operation) {
setRepeating(type, triggerAtTime, 0, operation);
}

然后继续调用
public void setRepeating(int type, long triggerAtTime, long interval,
PendingIntent operation) {
.....
synchronized (mLock) {
Alarm alarm = new Alarm();
alarm.type = type;
alarm.when = triggerAtTime;
alarm.repeatInterval = interval;
alarm.operation = operation;

// Remove this alarm if already scheduled.
removeLocked(operation);

if (localLOGV) Slog.v(TAG, "set: " + alarm);

int index = addAlarmLocked(alarm);
if (index == 0) {
setLocked(alarm);
}
}
}

然后就调用到
private void setLocked(Alarm alarm)
{
......
set(mDescriptor, alarm.type, alarmSeconds, alarmNanoseconds); //mDescriptor 这里的文件是 /dev/alarm
.....
}

这里就调用到jni了
private native void set(int fd, int type, long seconds, long nanoseconds);

这就调用到了com_android_server_AlarmManagerService.cpp 里面
static JNINativeMethod sMethods[] = {
/* name, signature, funcPtr */
{"init", "()I", (void*)android_server_AlarmManagerService_init},
{"close", "(I)V", (void*)android_server_AlarmManagerService_close},
{"set", "(IIJJ)V", (void*)android_server_AlarmManagerService_set},
{"waitForAlarm", "(I)I", (void*)android_server_AlarmManagerService_waitForAlarm},
{"setKernelTimezone", "(II)I", (void*)android_server_AlarmManagerService_setKernelTimezone},
};

set 对应的是android_server_AlarmManagerService_set, 具体是
static void android_server_AlarmManagerService_set(JNIEnv* env, jobject obj, jint fd, jint type, jlong seconds, jlong nanoseconds)
{
#if HAVE_ANDROID_OS
struct timespec ts;
ts.tv_sec = seconds;
ts.tv_nsec = nanoseconds;

int result = ioctl(fd, ANDROID_ALARM_SET(type), &ts);
if (result < 0)
{
LOGE("Unable to set alarm to %lld.%09lld: %s\n", seconds, nanoseconds, strerror(errno));
}
#endif
}

然后ioctl 就调用到了alarm-dev.c
static long alarm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
....
case ANDROID_ALARM_SET(0):
if (copy_from_user(&new_alarm_time, (void __user *)arg,
sizeof(new_alarm_time))) {
rv = -EFAULT;
goto err1;
}
from_old_alarm_set:
spin_lock_irqsave(&alarm_slock, flags);
pr_alarm(IO, "alarm %d set %ld.%09ld\n", alarm_type,
new_alarm_time.tv_sec, new_alarm_time.tv_nsec);
alarm_enabled |= alarm_type_mask;
alarm_start_range(&alarms[alarm_type],
timespec_to_ktime(new_alarm_time),
timespec_to_ktime(new_alarm_time));
spin_unlock_irqrestore(&alarm_slock, flags);
if (ANDROID_ALARM_BASE_CMD(cmd) != ANDROID_ALARM_SET_AND_WAIT(0)
&& cmd != ANDROID_ALARM_SET_AND_WAIT_OLD)
break;
/* fall though */
....

case ANDROID_ALARM_SET_RTC:
if (copy_from_user(&new_rtc_time, (void __user *)arg,
sizeof(new_rtc_time))) {
rv = -EFAULT;
goto err1;
}
rv = alarm_set_rtc(new_rtc_time);
spin_lock_irqsave(&alarm_slock, flags);
alarm_pending |= ANDROID_ALARM_TIME_CHANGE_MASK;
wake_up(&alarm_wait_queue);
spin_unlock_irqrestore(&alarm_slock, flags);
if (rv < 0)
goto err1;
break;
....
}

然后这边就调用到了alarm_start_range 设置闹钟, alarm_set_rtc 设置RTC
这两个函数在 android_alarm.h 声明,在 alarm.c 里实现
这是android_alarm.h 里面的声明
void alarm_start_range(struct alarm *alarm, ktime_t start, ktime_t end);
int alarm_try_to_cancel(struct alarm *alarm);
int alarm_cancel(struct alarm *alarm);
ktime_t alarm_get_elapsed_realtime(void);

/* set rtc while preserving elapsed realtime */
int alarm_set_rtc(const struct timespec ts);

下面看alarm.c 里面实现:
int alarm_set_rtc(struct timespec new_time)
{
....
ret = rtc_set_time(alarm_rtc_dev, &rtc_new_rtc_time);
....
}

alarm.c 里面实现了 alarm_suspend alarm_resume 函数
就是如果系统没有suspend的时候,设置闹钟并不会往rtc 芯片的寄存器上写数据,因为不需要唤醒系统,所以闹钟数据时间什么的就通过上层写到设备文件/dev/alarm
里面就可以了,AlarmThread 会不停的去轮寻下一个时间有没有闹钟,直接从设备文件 /dev/alarm 里面读取
第二种,系统要是进入susupend的话,alarm 的alarm_suspend 就会写到下层的rtc芯片的寄存器上去, 然后即使系统suspend之后,闹钟通过rtc 也能唤醒系统


这里就调用到了interface.c 里面 //这里面 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm) 差不多 也是跟下面一样
int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
{
....
err = rtc->ops->set_time(rtc->dev.parent, tm);
....
}

然后set_time 就看到具体的是那个RTC芯片,这边我们是rtc-pcf8563.c
static const struct rtc_class_ops pcf8563_rtc_ops = {
.read_time = pcf8563_rtc_read_time,
.set_time = pcf8563_rtc_set_time,
.read_alarm = pcf8563_rtc_read_alarm,
.set_alarm = pcf8563_rtc_set_alarm,
};
然后就到了
static int pcf8563_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
unsigned char buf[TIME_NUM];
int ret;

ret = data_calc(buf, tm, TIME_NUM);
if (ret < 0)
goto out;
ret = i2c_smbus_write_i2c_block_data(pcf8563_info->client, PCF8563_RTC_SEC, TIME_NUM, buf); //这边就调用i2c统一接口,往pcf8563rtc芯片寄存器里面写出数据
out:
return ret;
}

到此,闹钟时间就已经写到rtc 芯片的寄存器里面,第二个参数就是寄存器的名字,后面的buf就是要写入的时间,rtc芯片是额外供电的,所以系统suspend之后,系统kernel 都关了,但是rtc里面还有电,寄存器里面数据还是有的(掉电就会丢失数据),所以闹钟到了,通过硬件中断机制就可以唤醒系统。

上面那个rtc下面有几十个rtc芯片驱动代码,没有结构基本一样,都有基本操作函数,注册函数,都是对各自芯片上特有的寄存器操作,为什么调用的是 pcf8563rtc呢?这个要看你系统用的是那个芯片,这个可以通过./kernel/kernel/kernel/.config 查看,这边的pcf8563rtc 是当前系统正在使用的芯片型号
# CONFIG_RTC_DRV_ISL1208 is not set
# CONFIG_RTC_DRV_X1205 is not set
CONFIG_RTC_DRV_PCF8563=y
# CONFIG_RTC_DRV_PCF8583 is not set
# CONFIG_RTC_DRV_M41T80 is not set


下面是系统唤醒之后,闹钟怎么工作的流程,简单阐述
系统没有suspend的话直接走下面流程,如果suspend的话会被RTC唤醒,然后还是走下面的流程

private class AlarmThread extends Thread
{
public AlarmThread()
{
super("AlarmManager");
}

public void run()
{
while (true)
{
int result = waitForAlarm(mDescriptor); //这里调用jni调用static jint android_server_AlarmManagerService_waitForAlarm,主要还是对 /dev/alarm 操作
....
Alarm alarm = it.next();
try {
if (localLOGV) Slog.v(TAG, "sending alarm " + alarm);
alarm.operation.send(mContext, 0,
mBackgroundIntent.putExtra(
Intent.EXTRA_ALARM_COUNT, alarm.count),
mResultReceiver, mHandler);
....
}

}
}


static jint android_server_AlarmManagerService_waitForAlarm(JNIEnv* env, jobject obj, jint fd)
{
#if HAVE_ANDROID_OS
int result = 0;

do
{
result = ioctl(fd, ANDROID_ALARM_WAIT);
} while (result < 0 && errno == EINTR);

if (result < 0)
{
LOGE("Unable to wait on alarm: %s\n", strerror(errno));
return 0;
}

return result;
#endif
}

AlarmManagerService 里面有个AlarmThread 会一直轮询 /dev/alarm文件,如果打开失败就直接返回,成功就会做一些动作,比如查找时间最近的
alarm,比如睡眠被闹钟唤醒的时候,这边就发一个intent出去,然后在AlarmReceiver.java里面弹出里面会收到就会调用下面的
context.startActivity(alarmAlert);

然后弹出alarm 这个界面
Class c = AlarmAlert.class;
其中public class AlarmAlert extends AlarmAlertFullScreen 所以系统睡眠之后被alarm唤醒弹出的alarm就是这边start的
public class AlarmReceiver extends BroadcastReceiver {

/** If the alarm is older than STALE_WINDOW, ignore. It
is probably the result of a time or timezone change */
private final static int STALE_WINDOW = 30 * 60 * 1000;

@Override
public void onReceive(Context context, Intent intent) {
.........
Intent alarmAlert = new Intent(context, c);
alarmAlert.putExtra(Alarms.ALARM_INTENT_EXTRA, alarm);
alarmAlert.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK
| Intent.FLAG_ACTIVITY_NO_USER_ACTION);
context.startActivity(alarmAlert);
........
}

到这里alarm 就显示出来了

这篇关于从Alarm看Android上层UI到内核代码的流程分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/419762

相关文章

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

element-ui下拉输入框+resetFields无法回显的问题解决

《element-ui下拉输入框+resetFields无法回显的问题解决》本文主要介绍了在使用ElementUI的下拉输入框时,点击重置按钮后输入框无法回显数据的问题,具有一定的参考价值,感兴趣的... 目录描述原因问题重现解决方案方法一方法二总结描述第一次进入页面,不做任何操作,点击重置按钮,再进行下

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

SpringBoot使用注解集成Redis缓存的示例代码

《SpringBoot使用注解集成Redis缓存的示例代码》:本文主要介绍在SpringBoot中使用注解集成Redis缓存的步骤,包括添加依赖、创建相关配置类、需要缓存数据的类(Tes... 目录一、创建 Caching 配置类二、创建需要缓存数据的类三、测试方法Spring Boot 熟悉后,集成一个外