【自然语言处理】正向最大匹配算法(FMM),反向最大匹配算法(BMM)和双向最大匹配算法(BM)原理及实现

本文主要是介绍【自然语言处理】正向最大匹配算法(FMM),反向最大匹配算法(BMM)和双向最大匹配算法(BM)原理及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一,正向最大匹配算法(FMM)

 二,反向最大匹配算法(RMM)


一,正向最大匹配算法(FMM)

        正向最大匹配分词(Forward maximum matching segmentation)通常简称为FMM法。其基本思想为:假定分词词典中的最长词有i个汉字字符,则用被处理文档的当前字串中的前i个字作为匹配字段,查找字典。若字典中存在这样的一个字词,则匹配成功,匹配字段被作为一个词切分出来。如果词典中找不到这样的一个字词,则匹配失败,将匹配字段中的最后一个字去掉,对剩下的字串重新进行匹配处理。如此进行下去,直到匹配成功,即切分出一个词或剩余字串的长度为零为止。这样就完成了一轮匹配,然后取下一个i字字串进行匹配处理,直到文档被扫描完为止。

例子:

设变量dt为字典,s为待切字符串,result为被切后的词

令dt = ['abc', 'bcd'] ,s = ['abcd'],则 result = ['abc', 'd']

原理:字典中最大字符长度为‘abc’和‘bcd’,正向选取‘abc’,则拿‘abc’去匹配,s中匹配到‘abc’后切出,之后字典中最长的是‘d’,匹配到s的‘d’后切出,得到切片后的result = ['abc', 'd']

代码实现: 

def FMM(dt, s):  # 正向最大匹配算法result = []   max_len = max([len(i) for i in dt])    # 选取字典里长度最大的字符串start = 0while start != len(s):    # 判断列表不为空,建立循环                index = start + max_len    # 从0开始正向索引最大长度的字符串if index > len(s):         # 判断是否溢出列表index = len(s)for _ in range(max_len):    t = s[start:index]       # t是切片if t in dt or len(t) == 1:result.append(t)start = indexbreakindex -= 1 # 为了保证算法能够扫描到所有字符return result

 二,反向最大匹配算法(RMM)

        逆向最大匹配算法(Reserve maximum matching segmentation)的基本原理与正向最大匹配法相同,不同的是分词切分的方向与FMM法相反。逆向最大匹配法从被处理文档的末端开始匹配扫描,每次取最末端的i个字符(为词典中最长词数)作为匹配字段,若匹配失败,则去掉匹配字段最前面的一个字,继续匹配。相应地,它使用的分词词典是逆序词典,其中的每个词条都将按逆序方式存放。在实际处理时,先将文档进行倒排处理,生成逆序文档。然后,根据逆序词典,对逆序文档用正向最大匹配法处理即可。

例子:

设变量dt为字典,s为待切字符串,result为被切后的词

令dt = ['abc', 'bcd'] ,s = ['abcd'],则 result = ['a', 'bcd']

原理:字典中最大长度为'abc',‘bcd’,反向选取‘bcd’,则拿‘bcd’去匹配,s中匹配到‘bcd’后切出,之后字典中最长的是‘a’,匹配到s的‘a’后切出,得到切片后的result = ['a', 'bcd']

代码实现:

def RMM(dt, s): # 反向最大匹配算法result = []max_len = max([len(i) for i in dt]) # 选取字典里长度最大的字符串start = len(s)while start != 0:    #判断列表不为空,建立循环index = start - max_len    # 从列表最后开始索引最大长度的字符串if index < 0:        # 判断是否溢出列表index = 0for _ in range(max_len):t = s[index:start]    # t是切片if t in dt or len(t) == 1:result.insert(0, t)    # 在最前面插入start = indexbreakindex += 1return result

三,双向匹配算法(BM)

        双向最大匹配算法的原理就是将正向最大匹配算法和逆向最大匹配算法进行比较,从而选择正确的分词方式。

        比较原则/步骤:

        1.比较两种匹配算法的结果

        2.如果分词数量结果不同:选择数量较少的那个

        3.如果分词数量结果相同

​                 1.分词结果相同,返回任意一个

​                 2.分词结果不同,返回单字数较少的一个

​                 3.若单字数也相同,任意返回一个

例子:

设变量dt为字典,s为待切字符串,result_1为被正向切后的词,result_2为被反向切后的词

令dt = ['abc', 'deab'] ,s = ['abcdeabc'],则 result_1 = ["abc", "deab", "c"],result_2=["c", "deab"]

原理:字典中最大长度为'deab',则拿‘deab’去匹配,s中匹配到‘deab’后切出,之后字典中最长的是‘abc’,匹配到s的‘abc’后切出,得到切片后的result_1 = ["abc", "deab", "c"],同理result_2=["c", "deab"],其中正向的切词有三个,逆向有两个,数量不相等选择分词数量 少的,则输出逆向切词result_2=["c", "deab"]

def BM(dt, s): # 双向最大切词r1 = FMM(dt, s)r2 = RMM(dt, s)if len(r1) == len(r2):if r1 == r2:return r1else:r1_cnt = len([i for i in r1 if len(i)==1])r2_cnt = len([i for i in r2 if len(i)==1])return r1 if r1_cnt < r2_cnt else r2else:return r1 if len(r1) < len(r2) else r2

这篇关于【自然语言处理】正向最大匹配算法(FMM),反向最大匹配算法(BMM)和双向最大匹配算法(BM)原理及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/419710

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi