OpenMMLab OpenMMLab mmdeploy v1.1.0模型部署(一)

2023-11-23 11:20

本文主要是介绍OpenMMLab OpenMMLab mmdeploy v1.1.0模型部署(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、MMDepoly整体框架

模型部署是指把机器学习训练生成的算法模型,部署到各类云、边、端设备上去, 并使之高效运行,从而将算法模型实际地应用到现实生活中的各类任务中去,从而实现AI+的智能化转型。
目前,我们已经支持 5 个算法库和 5 种后端推理引擎,囊括多种应用场景:

MMDeploy 所支持算法库:

• 检测(MMDetection)
• 分割(MMSegmentation)
• 分类(MMClassification)
• 编辑(MMEditing)
• 文字识别(MMOCR)

MMDeploy 所支持后端推理引擎:

• ONNX Runtime
• TensorRT
• OpenPPL.NN
• ncnn
• OpenVINO
从具体模块组成看,MMDeploy 包含 2 个核心要素:模型转换器 ( Model Converter ) 和应用开发工具包(SDK)。
在这里插入图片描述

2.1 模型转换器

在这里插入图片描述
模型转换器 ( Model Converter ) 负责把各算法库的 PyTorch 模型转换成推理后端的模型,并进一步封装为 SDK 模型。

模型转换器的具体步骤为:
1)把 PyTorch 转换成 ONNX 模型;
2)对 ONNX 模型进行优化;
3)把 ONNX 模型转换成后端推理引擎支持的模型格式;
4)(可选)把模型转换中的 meta 信息和后端模型打包成 SDK 模型。

在传统部署流水线中,兼容性是最难以解决的瓶颈。针对这些问题,MMDeploy 在模型转换器中添加了模块重写、模型分块和自定义算子这三大功能

模块重写——有效代码替换

针对部分 Python 代码无法直接转换成 ONNX 的问题,MMDeploy 使用重写机制实现了函数、模块、符号表等三种粒度的代码替换,有效地适配 ONNX。

模型分块——精准切除冗余

针对部分模型的逻辑过于复杂,在后端里无法支持的问题,MMDeploy 使用了模型分块机制,能像手术刀一样精准切除掉模型中难以转换的部分,把原模型分成多个子模型,分别转换。这些被去掉的逻辑会在 SDK 中实现。

自定义算子——扩展引擎能力

OpenMMLab 实现了一些新算子,这些算子在 ONNX 或者后端中没有支持。针对这个问题,MMDeploy 把自定义算子在多个后端上进行了实现,扩充了推理引擎的表达能力。

2.2 应用开发工具包 SDK

在这里插入图片描述
SDK 为每种视觉任务均提供一组 C API。目前开放了分类、检测、分割、超分、文字检测、文字识别等几类任务的接口。 SDK 充分考虑了接口的易用性和友好性。每组接口均只由 ‘创建句柄’、‘应用句柄’、‘销毁数据’ 和 ‘销毁句柄’ 等函数组成。用法简单、便于集成。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2、 先决条件

为了进行端到端的模型部署,MMDeploy 需要 Python 3.6+ 和 PyTorch 1.8+。

conda create --name mmdeploy python=3.8 -y
conda activate mmdeploy
conda install pytorch=={pytorch_version} torchvision=={torchvision_version} cudatoolkit={cudatoolkit_version} -c pytorch -c conda-forge
pip3 install torch==1.8.2+cu102 torchvision==0.9.2+cu102 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html  -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
# CUDA 11.6
conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.6 -c pytorch -c conda-forge

3、安装

步骤 0.安装MMCV

pip install -U openmim
mim install mmengine
mim install "mmcv>=2.0.0rc2"  -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com

Step 1.安装MMDeploy和推理引擎

我们建议使用 MMDeploy 预编译包作为我们的最佳实践。目前支持model converter和sdk inference pypi包,这里添加链接描述提供sdk c/cpp库。您可以根据您的目标平台和设备下载它们。
支持的平台和设备矩阵如下:
在这里插入图片描述
注意:如果 MMDeploy 预构建包不符合您的目标平台或设备,请从源代码构建 MMDeploy。

1、以最新的预编译包为例,安装方法如下:

在这里插入图片描述

Linux-x86_64
# 安装 ONNX Runtime, ONNX, OpenCV 
pip install onnxruntime onnx opencv-python
pip install onnxruntime==1.8.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
# 1. install MMDeploy model converter
pip install mmdeploy==1.1.0# 2. install MMDeploy sdk inference
# you can install one to install according whether you need gpu inference
# 2.1 support onnxruntime
pip install mmdeploy-runtime==1.1.0
# 2.2 support onnxruntime-gpu, tensorrt
pip install mmdeploy-runtime-gpu==1.1.0# 3. install inference engine
# 3.1 install TensorRT
# !!! If you want to convert a tensorrt model or inference with tensorrt,
# download TensorRT-8.2.3.0 CUDA 11.x tar package from NVIDIA, and extract it to the current directory
https://developer.nvidia.com/nvidia-tensorrt-download
https://developer.nvidia.com/nvidia-tensorrt-8x-downloadpip install TensorRT-8.2.3.0/python/tensorrt-8.2.3.0-cp38-none-linux_x86_64.whl
pip install pycuda
export TENSORRT_DIR=$(pwd)/TensorRT-8.2.3.0
export LD_LIBRARY_PATH=${TENSORRT_DIR}/lib:$LD_LIBRARY_PATH
# !!! Moreover, download cuDNN 8.2.1 CUDA 11.x tar package from NVIDIA, and extract it to the current directory
export CUDNN_DIR=$(pwd)/cuda
export LD_LIBRARY_PATH=$CUDNN_DIR/lib64:$LD_LIBRARY_PATH# 3.2 install ONNX Runtime
# you can install one to install according whether you need gpu inference
# 3.2.1 onnxruntime
pip install onnxruntime==1.8.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-1.8.1.tgz
tar -zxvf onnxruntime-linux-x64-1.8.1.tgz
export ONNXRUNTIME_DIR=$(pwd)/onnxruntime-linux-x64-1.8.1
export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH# 3.2.2 onnxruntime-gpu
pip install onnxruntime-gpu==1.8.1
wget https://github.com/microsoft/onnxruntime/releases/download/v1.8.1/onnxruntime-linux-x64-gpu-1.8.1.tgz
tar -zxvf onnxruntime-linux-x64-gpu-1.8.1.tgz
export ONNXRUNTIME_DIR=$(pwd)/onnxruntime-linux-x64-gpu-1.8.1
export LD_LIBRARY_PATH=$ONNXRUNTIME_DIR/lib:$LD_LIBRARY_PATH
2、从源代码构建

手把手教你在 ubuntu 上使用 MMDeploy

Download
git clone -b main git@github.com:open-mmlab/mmdeploy.git --recursive

注意:
如果获取子模块失败,您可以按照以下说明手动获取子模块:

cd mmdeploy
git clone git@github.com:NVIDIA/cub.git third_party/cub
cd third_party/cub
git checkout c3cceac115# go back to third_party directory and git clone pybind11
cd ..
git clone git@github.com:pybind/pybind11.git pybind11
cd pybind11
git checkout 70a58c5cd ..
git clone git@github.com:gabime/spdlog.git spdlog
cd spdlog
git checkout 9e8e52c048

If it fails when git clone via SSH, you can try the HTTPS protocol like this:

git clone -b main https://github.com/open-mmlab/mmdeploy.git --recursive
Build

请访问以下链接了解如何根据目标平台构建MMDeploy。

linux-x86_64.md
windows.md
Windows-x86_64

4、配置怎么写

本教程介绍如何编写模型转换和部署的配置。部署配置包括onnx config, codebase config, backend config。

1.如何编写onnx配置

Onnx 配置描述如何将模型从 pytorch 导出到 onnx。

onnx 配置参数的描述
type:配置字典的类型。默认为onnx.
export_params:如果指定,将导出所有参数。如果您想导出未经训练的模型,请将其设置为 False。
keep_initializers_as_inputs:如果为 True,则导出图中的所有初始值设定项(通常对应于参数)也将作为输入添加到图中。如果为 False,则初始值设定项不会添加为图形的输入,并且仅将非参数输入添加为输入。
opset_version:Opset_version 默认为 11。
save_file:输出onnx文件。
input_names:分配给图形输入节点的名称。
output_names:分配给图的输出节点的名称。
input_shape:模型输入张量的高度和宽度。
onnx_config = dict(type='onnx',export_params=True,keep_initializers_as_inputs=False,opset_version=11,save_file='end2end.onnx',input_names=['input'],output_names=['output'],input_shape=None)

如果您需要使用动态轴
如果需要输入和输出的动态形状,则需要在onnx配置中添加dynamic_axes dict。

dynamic_axes:描述输入和输出的维度信息

    dynamic_axes={'input': {0: 'batch',2: 'height',3: 'width'},'dets': {0: 'batch',1: 'num_dets',},'labels': {0: 'batch',1: 'num_dets',},}

2. 如何编写代码库配置

代码库配置部分包含代码库类型和任务类型等信息。

代码库配置参数的描述
type:模型的代码库,包括mmpretrain, mmdet, mmseg, mmocr, mmagic。
task:模型的任务类型,参考所有代码库中的任务列表

codebase_config = dict(type='mmpretrain', task='Classification')

3. 后端配置如何写

后端配置主要用于指定模型运行的后端,并提供模型在后端运行时所需的信息,参考ONNX Runtime、TensorRT、ncnn、PPLNN。

type:模型后台,包括onnxruntime、、、、、。ncnnpplnntensorrtopenvino

backend_config = dict(type='tensorrt',common_config=dict(fp16_mode=False, max_workspace_size=1 << 30),model_inputs=[dict(input_shapes=dict(input=dict(min_shape=[1, 3, 512, 1024],opt_shape=[1, 3, 1024, 2048],max_shape=[1, 3, 2048, 2048])))])

4. TensorRT上mmpretrain的完整示例

在这里,我们提供了 TensorRT 上 mmpretrain 的完整部署配置。


codebase_config = dict(type='mmpretrain', task='Classification')backend_config = dict(type='tensorrt',common_config=dict(fp16_mode=False,max_workspace_size=1 << 30),model_inputs=[dict(input_shapes=dict(input=dict(min_shape=[1, 3, 224, 224],opt_shape=[4, 3, 224, 224],max_shape=[64, 3, 224, 224])))])onnx_config = dict(type='onnx',dynamic_axes={'input': {0: 'batch',2: 'height',3: 'width'},'output': {0: 'batch'}},export_params=True,keep_initializers_as_inputs=False,opset_version=11,save_file='end2end.onnx',input_names=['input'],output_names=['output'],input_shape=[224, 224])

5.我们的部署配置的命名规则

部署配置文件的文件名有特定的命名约定。
(task name)(backend name)(dynamic or static).py
task name:模型的任务类型。
backend name: 后端的名称。注意如果使用量化功能,需要指明量化类型。就像tensorrt-int8。
dynamic or static:动态或静态导出。请注意,如果后端需要明确的形状信息,则需要添加输入大小和height x width格式的描述。就像 一样dynamic-512x1024-2048x2048,这意味着最小输入形状是512x1024,最大输入形状是2048x2048。

detection_tensorrt-int8_dynamic-320x320-1344x1344.py

6. 如何编写模型配置

根据模型的代码库,编写模型配置文件。模型的配置文件用于初始化模型,参考MMPretrain、MMDetection、MMSegmentation、MMOCR、MMagic。

5、 转换模型

安装完成后,您可以通过运行来享受将 PyTorch 模型转换为当前模型开始的模型部署之旅tools/deploy.py。
基于以上设置,我们提供了将 MMDetection中的 Faster R-CNN 转换为 TensorRT 的示例,如下所示:

# clone mmdeploy to get the deployment config. `--recursive` is not necessary
git clone -b main https://github.com/open-mmlab/mmdeploy.git# clone mmdetection repo. We have to use the config file to build PyTorch nn module
git clone -b 3.x https://github.com/open-mmlab/mmdetection.git
cd mmdetection
mim install -v -e .
cd ..# download Faster R-CNN checkpoint
wget -P checkpoints https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth# run the command to start model conversion
python mmdeploy/tools/deploy.py \mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \mmdetection/configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \mmdetection/demo/demo.jpg \--work-dir mmdeploy_model/faster-rcnn \--device cuda \--dump-info

转换后的模型及其元信息将在 指定的路径中找到–work-dir。它们组成了 MMDeploy 模型,可以将其馈送到 MMDeploy SDK 中进行模型推理。
有关模型转换的更多详细信息,您可以阅读how_to_convert_model。如果您想自定义转换管道,可以按照本教程编辑配置文件。

本教程简要介绍如何使用 MMDeploy 工具将 OpenMMlab 模型导出到特定后端。笔记:

支持的后端有ONNXRuntime、TensorRT、ncnn、PPLNN、OpenVINO。
支持的代码库有MMPretrain、MMDetection、MMSegmentation、MMOCR、MMagic。

如何将模型从 Pytorch 转换到其他后端

先决条件

安装并构建您的目标后端。您可以参考ONNXRuntime-install、TensorRT-install、ncnn-install、PPLNN-install、OpenVINO-install了解更多信息。
安装并构建您的目标代码库。您可以参考MMPretrain-install、MMDetection-install、MMSegmentation-install、MMOCR-install、MMagic-install。

用法

python ./tools/deploy.py \${DEPLOY_CFG_PATH} \${MODEL_CFG_PATH} \${MODEL_CHECKPOINT_PATH} \${INPUT_IMG} \--test-img ${TEST_IMG} \--work-dir ${WORK_DIR} \--calib-dataset-cfg ${CALIB_DATA_CFG} \--device ${DEVICE} \--log-level INFO \--show \--dump-info

所有参数的描述
**deploy_cfg:**mmdeploy对模型的部署配置,包括推理框架的类型、是否量化、输入形状是否动态等。配置文件之间可能存在引用关系,是一个例子mmdeploy/mmpretrain/classification_ncnn_static.py。
**model_cfg:**算法库的模型配置,例如mmpretrain/configs/vision_transformer/vit-base-p32_ft-64xb64_in1k-384.py,不管mmdeploy的路径如何。
**checkpoint:**火炬模型路径。mmcv.FileClient可以以http/https开头,具体参见实现。
**img:**模型转换过程中用于测试的图像或点云文件的路径。
**–test-img:**用于测试模型的图像文件的路径。如果没有指定,它将被设置为None。
**–work-dir:**用于保存日志和模型的工作目录路径。
–calib-dataset-cfg:仅在int8模式下有效。用于校准的配置。如果未指定,它将被设置为None并使用模型配置中的“val”数据集进行校准。
–device:用于模型转换的设备。如果没有指定,它将被设置为cpu。对于 trt,请使用cuda:0格式。
–log-level:设置日志级别’CRITICAL’, ‘FATAL’, ‘ERROR’, ‘WARN’, ‘WARNING’, ‘INFO’, ‘DEBUG’, ‘NOTSET’。如果没有指定,它将被设置为INFO。
–show:是否显示检测输出。
–dump-info:是否输出SDK信息。

如何找到 PyTorch 模型对应的部署配置

Find the model's codebase folder in configs/. For converting a yolov3 model, you need to check configs/mmdet folder.
Find the model's task folder in configs/codebase_folder/. For a yolov3 model, you need to check configs/mmdet/detection folder.
Find the deployment config file in configs/codebase_folder/task_folder/. For deploying a yolov3 model to the onnx backend, you could use configs/mmdet/detection/detection_onnxruntime_dynamic.py.

Example

python ./tools/deploy.py \configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \$PATH_TO_MMDET/configs/yolo/yolov3_d53_8xb8-ms-608-273e_coco.py \$PATH_TO_MMDET/checkpoints/yolo/yolov3_d53_mstrain-608_273e_coco_20210518_115020-a2c3acb8.pth \$PATH_TO_MMDET/demo/demo.jpg \--work-dir work_dir \--show \--device cuda:0

5、 推理模型

模型转换后,我们不仅可以通过Model Converter进行推理,还可以通过Inference SDK进行推理。

(一)通过模型转换器进行推理

Model Converter 提供了一个名为 inference_model 的统一 API来完成这项工作,使所有推理后端 API 对用户透明。以之前转换的Faster R-CNN张量模型为例,

from mmdeploy.apis import inference_model
result = inference_model(model_cfg='mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py',deploy_cfg='mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py',backend_files=['mmdeploy_model/faster-rcnn/end2end.engine'],img='mmdetection/demo/demo.jpg',device='cuda:0')
'backend_files' in this API refers to backend engine file path, which MUST be put in a list, since some inference engines like OpenVINO and ncnn separate the network structure and its weights into two files.

(二)通过SDK进行推理

您可以直接运行预编译包中的MMDeploy演示程序来获取推理结果。

wget https://github.com/open-mmlab/mmdeploy/releases/download/v1.1.0/mmdeploy-1.1.0-linux-x86_64-cuda11.3.tar.gz
tar xf mmdeploy-1.1.0-linux-x86_64-cuda11.3
cd mmdeploy-1.1.0-linux-x86_64-cuda11.3
# run python demo
python example/python/object_detection.py cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
# run C/C++ demo
# build the demo according to the README.md in the folder.
./bin/object_detection cuda ../mmdeploy_model/faster-rcnn ../mmdetection/demo/demo.jpg
In the above command, the input model is SDK Model path. It is NOT engine file path but actually the path passed to --work-dir. It not only includes engine files but also meta information like 'deploy.json' and 'pipeline.json'.

在下一节中,我们将提供使用 SDK 不同的 FFI(外部函数接口)部署上述转换后的 Faster R-CNN 模型的示例。

Python API

from mmdeploy_runtime import Detector
import cv2img = cv2.imread('mmdetection/demo/demo.jpg')# create a detector
detector = Detector(model_path='mmdeploy_models/faster-rcnn', device_name='cuda', device_id=0)
# run the inference
bboxes, labels, _ = detector(img)
# Filter the result according to threshold
indices = [i for i in range(len(bboxes))]
for index, bbox, label_id in zip(indices, bboxes, labels):[left, top, right, bottom], score = bbox[0:4].astype(int),  bbox[4]if score < 0.3:continuecv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0))cv2.imwrite('output_detection.png', img)
image_classification.py
# Copyright (c) OpenMMLab. All rights reserved.
import argparseimport cv2
from mmdeploy_runtime import Classifierdef parse_args():parser = argparse.ArgumentParser(description='show how to use sdk python api')parser.add_argument('device_name', help='name of device, cuda or cpu')parser.add_argument('model_path',help='path of mmdeploy SDK model dumped by model converter')parser.add_argument('image_path', help='path of an image')args = parser.parse_args()return argsdef main():args = parse_args()img = cv2.imread(args.image_path)classifier = Classifier(model_path=args.model_path, device_name=args.device_name, device_id=0)result = classifier(img)for label_id, score in result:print(label_id, score)if __name__ == '__main__':main()
object_detection.py
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import mathimport cv2
from mmdeploy_runtime import Detectordef parse_args():parser = argparse.ArgumentParser(description='show how to use sdk python api')parser.add_argument('device_name', help='name of device, cuda or cpu')parser.add_argument('model_path',help='path of mmdeploy SDK model dumped by model converter')parser.add_argument('image_path', help='path of an image')args = parser.parse_args()return argsdef main():args = parse_args()img = cv2.imread(args.image_path)detector = Detector(model_path=args.model_path, device_name=args.device_name, device_id=0)bboxes, labels, masks = detector(img)indices = [i for i in range(len(bboxes))]for index, bbox, label_id in zip(indices, bboxes, labels):[left, top, right, bottom], score = bbox[0:4].astype(int), bbox[4]if score < 0.3:continuecv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0))if masks[index].size:mask = masks[index]blue, green, red = cv2.split(img)x0 = int(max(math.floor(bbox[0]) - 1, 0))y0 = int(max(math.floor(bbox[1]) - 1, 0))mask_img = blue[y0:y0 + mask.shape[0], x0:x0 + mask.shape[1]]cv2.bitwise_or(mask, mask_img, mask_img)img = cv2.merge([blue, green, red])cv2.imwrite('output_detection.png', img)if __name__ == '__main__':main()
image_segmentation.py
# Copyright (c) OpenMMLab. All rights reserved.
import argparseimport cv2
import numpy as np
from mmdeploy_runtime import Segmentordef parse_args():parser = argparse.ArgumentParser(description='show how to use sdk python api')parser.add_argument('device_name', help='name of device, cuda or cpu')parser.add_argument('model_path',help='path of mmdeploy SDK model dumped by model converter')parser.add_argument('image_path', help='path of an image')args = parser.parse_args()return argsdef get_palette(num_classes=256):state = np.random.get_state()# random colornp.random.seed(42)palette = np.random.randint(0, 256, size=(num_classes, 3))np.random.set_state(state)return [tuple(c) for c in palette]def main():args = parse_args()img = cv2.imread(args.image_path)segmentor = Segmentor(model_path=args.model_path, device_name=args.device_name, device_id=0)seg = segmentor(img)if seg.dtype == np.float32:seg = np.argmax(seg, axis=0)palette = get_palette()color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)for label, color in enumerate(palette):color_seg[seg == label, :] = color# convert to BGRcolor_seg = color_seg[..., ::-1]img = img * 0.5 + color_seg * 0.5img = img.astype(np.uint8)cv2.imwrite('output_segmentation.png', img)if __name__ == '__main__':main()

C++ API

使用 SDK C++ API 应遵循以下模式,
在这里插入图片描述

现在我们将这个过程应用到上面的 Faster R-CNN 模型上。

#include <cstdlib>
#include <opencv2/opencv.hpp>
#include "mmdeploy/detector.hpp"int main() {const char* device_name = "cuda";int device_id = 0;std::string model_path = "mmdeploy_model/faster-rcnn";std::string image_path = "mmdetection/demo/demo.jpg";// 1. load modelmmdeploy::Model model(model_path);// 2. create predictormmdeploy::Detector detector(model, mmdeploy::Device{device_name, device_id});// 3. read imagecv::Mat img = cv::imread(image_path);// 4. inferenceauto dets = detector.Apply(img);// 5. deal with the result. Here we choose to visualize itfor (int i = 0; i < dets.size(); ++i) {const auto& box = dets[i].bbox;fprintf(stdout, "box %d, left=%.2f, top=%.2f, right=%.2f, bottom=%.2f, label=%d, score=%.4f\n",i, box.left, box.top, box.right, box.bottom, dets[i].label_id, dets[i].score);if (bboxes[i].score < 0.3) {continue;}cv::rectangle(img, cv::Point{(int)box.left, (int)box.top},cv::Point{(int)box.right, (int)box.bottom}, cv::Scalar{0, 255, 0});}cv::imwrite("output_detection.png", img);return 0;
}

当您构建此示例时,请尝试在 CMake 项目中添加 MMDeploy 包,如下所示。然后传给-DMMDeploy_DIRcmake,cmake表示所在路径MMDeployConfig.cmake。您可以在预构建的包中找到它。
When you build this example, try to add MMDeploy package in your CMake project as following. Then pass -DMMDeploy_DIR to cmake, which indicates the path where MMDeployConfig.cmake locates. You can find it in the prebuilt package.

find_package(MMDeploy REQUIRED)
target_link_libraries(${name} PRIVATE mmdeploy ${OpenCV_LIBS})

有关更多 SDK C++ API 用法,请阅读这些示例
其余的 C、C# 和 Java API 用法请分别阅读C 演示、C# 演示和Java 演示。我们将在下一个版本中更多地讨论它们。

加速预处理(实验)

如果你想融合预处理来加速,请参考这个文档添加链接描述

在某些情况下,MMDeploy 提供了融合转换以实现加速的功能。
使用SDK进行推理时,可以编辑pipeline.json来开启fuse选项。
给MMDeploy带来fuse变换的能力,可以参考CVFusion的使用。

6、评估模型

您可以使用测试已部署模型的性能tool/test.py。例如

python ${MMDEPLOY_DIR}/tools/test.py \${MMDEPLOY_DIR}/configs/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \${MMDET_DIR}/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \--model ${BACKEND_MODEL_FILES} \--metrics ${METRICS} \--device cuda:0

您可以阅读如何评估模型以了解更多详细信息。添加链接描述

Useful Tools

除deploy.py之外,该目录下还有其他有用的工具tools/。

torch2onnx

onnx2pplnn

onnx2tensorrt

onnx2ncnn

这篇关于OpenMMLab OpenMMLab mmdeploy v1.1.0模型部署(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/417583

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU