Adaptive Synchronization of Dynamics on Evolving Complex Networks

2023-11-23 04:50

本文主要是介绍Adaptive Synchronization of Dynamics on Evolving Complex Networks,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文链接:https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.114101

发表在:PRL 2008

--------------------------------------------------------------------------------------------------------------------------------------------------------------------

传统的模型的coupling的形式,

其中,Aij 代表ji的coupling强度,Aii=0, xi(t)是对应节点in维状态变量,H:Rn --> Rn,  一共有N个节点。

 

假设:对于节点i,

  a. (1)式的第一项是可观测的信号,定义该信号为,

  b. 不知道输入的强度和,i.e., Aij.

 

接下来考虑下面的形式,

γ:constan gain 对于所有的节点. 同步解,

 

存在, 当σi(t) 等于

注意到,当

式子(4)可以写成,

 

其中

并且行和都等于0. 如果存在同步解,那么(7)式的最后一项就恒等于0. 动力学方程就变成了没有coulping的形式,

在这种情况下,根据master stability function theory, 同步解的稳定性可以通过选取合适的couping γ 保证.

 

需要注意的是,如果σi(t)  不满足(5)式,就不能保证同步解的稳定性了。下面将试着去如何设计σi(t)  , 并且我们事先假设选取的 γ 能够使得同步解在σi(t)  满足(5)式时是稳定

 

在给出具体σi(t)的设计之前,对于节点i,我们先定义一个量,

并且选择ν满足,

其中τSτN分别是节点动力系统xi(t)的time scale,网络结构Aij(t)的time scale. 有了上面的这个假设,(9)式中σi(t') 就可以用σi(t) 代替(我没怎么看出来。。),从而近似(9)式,得到,

 

其中

 

 对于(9)式,如果等于0,那么就是同步,所以可以通过梯度下降的方法求近似解Δi的最小值,即,

 

 其中α是可调参数。 未来避免(12)和(13)式算积分,将其写成ODE的形式如下,

 

 综上,设计的adaptive 策略可以用一组微分方程表示,i.e., 式子(4),(11),(15),(16).

 

 

实验

考虑一个N个节点的随机网络,<k>N/2 条无向边,<k>是平均度。对于t=0时候,如果节点i和节点j有边,那么邻接矩阵Aij(0)=Aji(0)=1,否则Aij(0)=0. 当t>0的时候,假设网络的演化为,

 

 

 εij[0, 1]的随机数,ωij是[ωmin, ωmax]之间的随机数,ωmax > ωmin  > 0 . 并且网络的时间尺度τN=(ωmax )-1, much longer than 节点动力学的时间尺度τS,i.e.,  τN>τS,

考虑Rossler oscillators,

 

 

 为了简单起见,假设自适应过程(15)非常快. 让α→oo, 那么 σi(t) 快速收敛到γCi(t)/Bi(t). 这样子,我们可以之间把(11)式子替换成,

 

 v以及Ci,Bi的初值对动力学是至关重要的。假设Aij(0)是已知的,我们让Ci(0)=Bi(0)×[ΣjAij(0)]-1, 从而能够在初始时刻满足式子(6). 

 因为耦合系统可能存在其它的吸引子,我们希望设计合适的初值Bij(0),使得一开始耦合系统就落在同步解的吸引域中。为此,我们假设已经在同步解(8)上了,对式子(16)在时间轴上取平均,得到近似,B≈ <si2>, 根据这个例子H(x)=(x, 0, 0)T, 我们有<si2>≈<k2><xS12>t其中<xS12>t是同步解(8)xS1(t)在时间轴上的平均, 即,

下面是数值结果,Figure 1(a)显示的是adaption ((16)和(18),(17))的结果,几乎50个节点的演化轨迹都是一样的(几乎重合了) . Fig. 1(b)是没有adaption的结果, i.e., 

 

 

转载于:https://www.cnblogs.com/skykill/p/11421887.html

这篇关于Adaptive Synchronization of Dynamics on Evolving Complex Networks的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415475

相关文章

A Comprehensive Survey on Graph Neural Networks笔记

一、摘要-Abstract 1、传统的深度学习模型主要处理欧几里得数据(如图像、文本),而图神经网络的出现和发展是为了有效处理和学习非欧几里得域(即图结构数据)的信息。 2、将GNN划分为四类:recurrent GNNs(RecGNN), convolutional GNNs,(GCN), graph autoencoders(GAE), and spatial–temporal GNNs(S

Complex Networks Package for MatLab

http://www.levmuchnik.net/Content/Networks/ComplexNetworksPackage.html 翻译: 复杂网络的MATLAB工具包提供了一个高效、可扩展的框架,用于在MATLAB上的网络研究。 可以帮助描述经验网络的成千上万的节点,生成人工网络,运行鲁棒性实验,测试网络在不同的攻击下的可靠性,模拟任意复杂的传染病的传

Convolutional Neural Networks for Sentence Classification论文解读

基本信息 作者Yoon Kimdoi发表时间2014期刊EMNLP网址https://doi.org/10.48550/arXiv.1408.5882 研究背景 1. What’s known 既往研究已证实 CV领域著名的CNN。 2. What’s new 创新点 将CNN应用于NLP,打破了传统NLP任务主要依赖循环神经网络(RNN)及其变体的局面。 用预训练的词向量(如word2v

【机器学习】生成对抗网络(Generative Adversarial Networks, GANs)详解

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 生成对抗网络(Generative Adversarial Networks, GANs)详解GANs的基本原理GANs的训练过程GANs的发展历程GANs在实际任务中的应用小结 生成对

COD论文笔记 Adaptive Guidance Learning for Camouflaged Object Detection

论文的主要动机、现有方法的不足、拟解决的问题、主要贡献和创新点如下: 动机: 论文的核心动机是解决伪装目标检测(COD)中的挑战性任务。伪装目标检测旨在识别和分割那些在视觉上与周围环境高度相似的目标,这对于计算机视觉来说是非常困难的任务。尽管深度学习方法在该领域取得了一定进展,但现有方法仍面临有效分离目标和背景的难题,尤其是在伪装目标与背景特征高度相似的情况下。 现有方法的不足之处: 过于

AUTOSAR Adaptive与智能汽车E/E架构发展趋势

AUTOSAR Adaptive是一个面向现代汽车应用需求的标准,特别适用于那些需要高计算能力和灵活性的应用。以下是AUTOSAR Adaptive的典型特性: 高计算能力:AUTOSAR Adaptive支持使用MPU(微处理器),这些处理器的性能与PC或智能手机中的处理器相当。这样的高计算能力是实现半自动驾驶和其他复杂功能所必需的。动态更新和管理:AUTOSAR Adaptive的架构允

Image Transformation can make Neural Networks more robust against Adversarial Examples

Image Transformation can make Neural Networks more robust against Adversarial Examples 创新点 1.旋转解决误分类 总结 可以说简单粗暴有效

UIKit Dynamics入门

什么是UIKit动力学(UIKit Dynamics) 其实就是UIKit的一套动画和交互体系。我们现在进行UI动画基本都是使用CoreAnimation或者UIView animations。而UIKit动力学最大的特点是将现实世界动力驱动的动画引入了UIKit,比如重力,铰链连接,碰撞,悬挂等效果。一言蔽之,即是,将2D物理引擎引入了人UIKit。需要注意,UIKit动力学的引入,并不是

SAXParseException: cvc-complex-type.2.4.c

 在applicationContext.xml配置使用标签时,编译器不识别的情况。 不识别<context>标签,不识别 <tx:annotation-driven>标签等。 只需修改下XML的规范信息。 <beans xmlns="http://www.springframework.org/schema/beans"     xmlns:xsi="http://www.

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)1.9-1.10

目录 第四门课 卷积神经网络(Convolutional Neural Networks)第一周 卷积神经网络(Foundations of Convolutional Neural Networks)1.9 池化层(Pooling layers)1.10 卷 积 神 经 网 络 示 例 ( Convolutional neural network example) 第四门课