容器应用总是丢包如何分析?

2023-11-23 04:21

本文主要是介绍容器应用总是丢包如何分析?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Docker 容器应用总是丢包如何分析?

文章目录

  • Docker 容器应用总是丢包如何分析?
    • 1. 回顾
    • 2. 案例准备
    • 3. 案例分析
      • 3.1 链路层
      • 3.2 网络层和传输层
      • 3.3 iptables
      • 3.4 tcpdump


1. 回顾

容器化后的应用程序,问题分析结合:

  • cgroups 会影响容器应用的运行;
  • iptables 中的 NAT,会影响容器的网络性能;
  • 叠加文件系统,会影响应用的 I/O 性能等。

就以最常用的反向代理服务器 Nginx 为例,学习丢包的分析方法

所谓丢包,是指在网络数据的收发过程中,由于种种原因,数据包还没传输到应用程序中,就被丢弃了。这些被丢弃包的数量,除以总的传输包数,也就是我们常说的丢包率。丢包率是网络性能中最核心的指标之一。

2. 案例准备

  • Ubuntu 18.04 两台
  • 机器配置:2 CPU,8GB 内存
  • 预先安装 docker、curl、hping3 等工具,如 apt install docker.io curl hping3。

在这里插入图片描述

3. 案例分析

在终端一中执行下面的命令,启动 Nginx 应用,并在 80 端口监听。如果一切正常,你应该可以看到如下的输出:

$ docker run --name nginx --hostname nginx --privileged -p 80:80 -itd feisky/nginx:drop
dae0202cc27e5082b282a6aeeb1398fcec423c642e63322da2a97b9ebd7538e0$ docker ps
CONTAINER ID        IMAGE               COMMAND             CREATED             STATUS              PORTS                NAMES
dae0202cc27e        feisky/nginx:drop   "/start.sh"         4 minutes ago       Up 4 minutes        0.0.0.0:80->80/tcp   nginx

接着,我们切换到终端二中,执行下面的 hping3 命令,进一步验证 Nginx 是不是真的可以正常访问了。注意,这里我没有使用 ping,是因为 ping 基于 ICMP 协议,而 Nginx 使用的是 TCP 协议。

# -c表示发送10个请求,-S表示使用TCP SYN,-p指定端口为80
$ hping3 -c 10 -S -p 80 192.168.0.30
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=3 win=5120 rtt=7.5 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=4 win=5120 rtt=7.4 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=5 win=5120 rtt=3.3 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=7 win=5120 rtt=3.0 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=6 win=5120 rtt=3027.2 ms--- 192.168.0.30 hping statistic ---
10 packets transmitted, 5 packets received, 50% packet loss
round-trip min/avg/max = 3.0/609.7/3027.2 ms

从 hping3 的输出中,我们可以发现,发送了 10 个请求包,却只收到了 5 个回复,50% 的包都丢了。再观察每个请求的 RTT 可以发现,RTT 也有非常大的波动变化,小的时候只有 3ms,而大的时候则有 3s。根据这些输出,我们基本能判断,已经发生了丢包现象。可以猜测,3s 的 RTT ,很可能是因为丢包后重传导致的。那到底是哪里发生了丢包呢?

在这里,为了帮你理解网络丢包的原理,我画了一张图,你可以保存并打印出来使用:

在这里插入图片描述
从图中你可以看出,可能发生丢包的位置,实际上贯穿了整个网络协议栈。换句话说,全程都有丢包的可能。比如我们从下往上看:

  • 在两台 VM 连接之间,可能会发生传输失败的错误,比如网络拥塞、线路错误等;
  • 在网卡收包后,环形缓冲区可能会因为溢出而丢包;
  • 在链路层,可能会因为网络帧校验失败、QoS 等而丢包;
  • 在 IP 层,可能会因为路由失败、组包大小超过 MTU 等而丢包;
  • 在传输层,可能会因为端口未监听、资源占用超过内核限制等而丢包;
  • 在套接字层,可能会因为套接字缓冲区溢出而丢包;
  • 在应用层,可能会因为应用程序异常而丢包;
  • 此外,如果配置了 iptables 规则,这些网络包也可能因为 iptables 过滤规则而丢包。

现在我们切换回终端一,执行下面的命令,进入容器的终端中:

$ docker exec -it nginx bash
root@nginx:/#

么, 接下来,我们就可以从协议栈中,逐层排查丢包问题。

3.1 链路层

首先,来看最底下的链路层。当缓冲区溢出等原因导致网卡丢包时,Linux 会在网卡收发数据的统计信息中,记录下收发错误的次数。你可以通过 ethtool 或者 netstat ,来查看网卡的丢包记录。比如,可以在容器中执行下面的命令,查看丢包情况:

root@nginx:/# netstat -i
Kernel Interface table
Iface      MTU    RX-OK RX-ERR RX-DRP RX-OVR    TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0       100       31      0      0 0             8      0      0      0 BMRU
lo       65536        0      0      0 0             0      0      0      0 LRU

输出中的 RX-OK、RX-ERR、RX-DRP、RX-OVR ,分别表示接收时的总包数、总错误数、进入 Ring Buffer 后因其他原因(如内存不足)导致的丢包数以及 Ring Buffer 溢出导致的丢包数。

TX-OK、TX-ERR、TX-DRP、TX-OVR 也代表类似的含义,只不过是指发送时对应的各个指标。

注意,由于 Docker 容器的虚拟网卡,实际上是一对 veth pair,一端接入容器中用作 eth0,另一端在主机中接入 docker0 网桥中。veth 驱动并没有实现网络统计的功能,所以使用 ethtool -S 命令,无法得到网卡收发数据的汇总信息。

从这个输出中,我们没有发现任何错误,说明容器的虚拟网卡没有丢包。不过要注意,如果用 tc 等工具配置了 QoS,那么 tc 规则导致的丢包,就不会包含在网卡的统计信息中。所以接下来,我们还要检查一下 eth0 上是否配置了 tc 规则,并查看有没有丢包。我们继续容器终端中,执行下面的 tc 命令,不过这次注意添加 -s 选项,以输出统计信息:

root@nginx:/# tc -s qdisc show dev eth0
qdisc netem 800d: root refcnt 2 limit 1000 loss 30%Sent 432 bytes 8 pkt (dropped 4, overlimits 0 requeues 0)backlog 0b 0p requeues 0

从 tc 的输出中可以看到, eth0 上面配置了一个网络模拟排队规则(qdisc netem),并且配置了丢包率为 30%(loss 30%)。再看后面的统计信息,发送了 8 个包,但是丢了 4 个。看来,应该就是这里,导致 Nginx 回复的响应包,被 netem 模块给丢了。既然发现了问题,解决方法也就很简单了,直接删掉 netem 模块就可以了。我们可以继续在容器终端中,执行下面的命令,删除 tc 中的 netem 模块:

root@nginx:/# tc qdisc del dev eth0 root netem loss 30%

删除后,问题到底解决了没?我们切换到终端二中,重新执行刚才的 hping3 命令,看看现在还有没有问题:

$ hping3 -c 10 -S -p 80 192.168.0.30
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=0 win=5120 rtt=7.9 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=2 win=5120 rtt=1003.8 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=5 win=5120 rtt=7.6 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=6 win=5120 rtt=7.4 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=9 win=5120 rtt=3.0 ms--- 192.168.0.30 hping statistic ---
10 packets transmitted, 5 packets received, 50% packet loss
round-trip min/avg/max = 3.0/205.9/1003.8 ms

不幸的是,从 hping3 的输出中,我们可以看到,跟前面现象一样,还是 50% 的丢包;RTT 的波动也仍旧很大,从 3ms 到 1s。显然,问题还是没解决,丢包还在继续发生。不过,既然链路层已经排查完了,我们就继续向上层分析,看看网络层和传输层有没有问题。

3.2 网络层和传输层

在网络层和传输层中,引发丢包的因素非常多。不过,其实想确认是否丢包,是非常简单的事,因为 Linux 已经为我们提供了各个协议的收发汇总情况。我们继续在容器终端中,执行下面的 netstat -s 命令,就可以看到协议的收发汇总,以及错误信息了:

root@nginx:/# netstat -s
Ip:Forwarding: 1          //开启转发31 total packets received    //总收包数0 forwarded            //转发包数0 incoming packets discarded  //接收丢包数25 incoming packets delivered  //接收的数据包数15 requests sent out      //发出的数据包数
Icmp:0 ICMP messages received    //收到的ICMP包数0 input ICMP message failed    //收到ICMP失败数ICMP input histogram:0 ICMP messages sent      //ICMP发送数0 ICMP messages failed      //ICMP失败数ICMP output histogram:
Tcp:0 active connection openings  //主动连接数0 passive connection openings  //被动连接数11 failed connection attempts  //失败连接尝试数0 connection resets received  //接收的连接重置数0 connections established    //建立连接数25 segments received      //已接收报文数21 segments sent out      //已发送报文数4 segments retransmitted    //重传报文数0 bad segments received      //错误报文数0 resets sent          //发出的连接重置数
Udp:0 packets received...
TcpExt:11 resets received for embryonic SYN_RECV sockets  //半连接重置数0 packet headers predictedTCPTimeouts: 7    //超时数TCPSynRetrans: 4  //SYN重传数...

netstat 汇总了 IP、ICMP、TCP、UDP 等各种协议的收发统计信息。不过,我们的目的是排查丢包问题,所以这里主要观察的是错误数、丢包数以及重传数。根据上面的输出,你可以看到,只有 TCP 协议发生了丢包和重传,分别是:

  • 11 次连接失败重试(11 failed connection attempts)
  • 4 次重传(4 segments retransmitted)
  • 11 次半连接重置(11 resets received for embryonic SYN_RECV sockets)
  • 4 次 SYN 重传(TCPSynRetrans)
  • 7 次超时(TCPTimeouts)

这个结果告诉我们,TCP 协议有多次超时和失败重试,并且主要错误是半连接重置。换句话说,主要的失败,都是三次握手失败。不过,虽然在这儿看到了这么多失败,但具体失败的根源还是无法确定。所以,我们还需要继续顺着协议栈来分析。

3.3 iptables

首先我们要知道,除了网络层和传输层的各种协议,iptables 和内核的连接跟踪机制也可能会导致丢包。所以,这也是发生丢包问题时,我们必须要排查的一个因素。

我们先来看看连接跟踪,要确认是不是连接跟踪导致的问题,其实只需要对比当前的连接跟踪数和最大连接跟踪数即可。不过,由于连接跟踪在 Linux 内核中是全局的(不属于网络命名空间),我们需要退出容器终端,回到主机中来查看。你可以在容器终端中,执行 exit ;然后执行下面的命令,查看连接跟踪数:

# 容器终端中执行exit
root@nginx:/# exit
exit# 主机终端中查询内核配置
$ sysctl net.netfilter.nf_conntrack_max
net.netfilter.nf_conntrack_max = 262144
$ sysctl net.netfilter.nf_conntrack_count
net.netfilter.nf_conntrack_count = 182

从这儿你可以看到,连接跟踪数只有 182,而最大连接跟踪数则是 262144。显然,这里的丢包,不可能是连接跟踪导致的。接着,再来看 iptables。回顾一下 iptables 的原理,它基于 Netfilter 框架,通过一系列的规则,对网络数据包进行过滤(如防火墙)和修改(如 NAT)

些 iptables 规则,统一管理在一系列的表中,包括 filter(用于过滤)、nat(用于 NAT)、mangle(用于修改分组数据) 和 raw(用于原始数据包)等。而每张表又可以包括一系列的链,用于对 iptables 规则进行分组管理。

对于丢包问题来说,最大的可能就是被 filter 表中的规则给丢弃了。要弄清楚这一点,就需要我们确认,那些目标为 DROP 和 REJECT 等会弃包的规则,有没有被执行到。

你可以把所有的 iptables 规则列出来,根据收发包的特点,跟 iptables 规则进行匹配。不过显然,如果 iptables 规则比较多,这样做的效率就会很低。当然,更简单的方法,就是直接查询 DROP 和 REJECT 等规则的统计信息,看看是否为 0。如果统计值不是 0 ,再把相关的规则拎出来进行分析。

我们可以通过 iptables -nvL 命令,查看各条规则的统计信息。比如,你可以执行下面的 docker exec 命令,进入容器终端;然后再执行下面的 iptables 命令,就可以看到 filter 表的统计数据了:

# 在主机中执行
$ docker exec -it nginx bash# 在容器中执行
root@nginx:/# iptables -t filter -nvL
Chain INPUT (policy ACCEPT 25 packets, 1000 bytes)pkts bytes target     prot opt in     out     source               destination6   240 DROP       all  --  *      *       0.0.0.0/0            0.0.0.0/0            statistic mode random probability 0.29999999981Chain FORWARD (policy ACCEPT 0 packets, 0 bytes)pkts bytes target     prot opt in     out     source               destinationChain OUTPUT (policy ACCEPT 15 packets, 660 bytes)pkts bytes target     prot opt in     out     source               destination6   264 DROP       all  --  *      *       0.0.0.0/0            0.0.0.0/0            statistic mode random probability 0.29999999981

从 iptables 的输出中,你可以看到,**两条 DROP 规则的统计数值不是 0,它们分别在 INPUT 和 OUTPUT 链中。这两条规则实际上是一样的,指的是使用 statistic 模块,进行随机 30% 的丢包。**再观察一下它们的匹配规则。**0.0.0.0/0 表示匹配所有的源 IP 和目的 IP,也就是会对所有包都进行随机 30% 的丢包。**看起来,这应该就是导致部分丢包的“罪魁祸首”了。既然找出了原因,接下来的优化就比较简单了。比如,把这两条规则直接删除就可以了。我们可以在容器终端中,执行下面的两条 iptables 命令,删除这两条 DROP 规则:

root@nginx:/# iptables -t filter -D INPUT -m statistic --mode random --probability 0.30 -j DROP
root@nginx:/# iptables -t filter -D OUTPUT -m statistic --mode random --probability 0.30 -j DROP

删除后,问题是否就被解决了呢?我们可以切换到终端二中,重新执行刚才的 hping3 命令,看看现在是否正常:

$ hping3 -c 10 -S -p 80 192.168.0.30
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=0 win=5120 rtt=11.9 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=1 win=5120 rtt=7.8 ms
...
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=9 win=5120 rtt=15.0 ms--- 192.168.0.30 hping statistic ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 3.3/7.9/15.0 ms

这次输出你可以看到,现在已经没有丢包了,并且延迟的波动变化也很小。看来,丢包问题应该已经解决了。

不过,到目前为止,我们一直使用的 hping3 工具,只能验证案例 Nginx 的 80 端口处于正常监听状态,却还没有访问 Nginx 的 HTTP 服务。所以,不要匆忙下结论结束这次优化,我们还需要进一步确认,Nginx 能不能正常响应 HTTP 请求。

我们继续在终端二中,执行如下的 curl 命令,检查 Nginx 对 HTTP 请求的响应:

$ curl --max-time 3 http://192.168.0.30
curl: (28) Operation timed out after 3000 milliseconds with 0 bytes received

从 curl 的输出中,你可以发现,这次连接超时了。可是,刚才我们明明用 hping3 验证了端口正常,现在却发现 HTTP 连接超时,是不是因为 Nginx 突然异常退出了呢?不妨再次运行 hping3 来确认一下:

$ hping3 -c 3 -S -p 80 192.168.0.30
HPING 192.168.0.30 (eth0 192.168.0.30): S set, 40 headers + 0 data bytes
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=0 win=5120 rtt=7.8 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=1 win=5120 rtt=7.7 ms
len=44 ip=192.168.0.30 ttl=63 DF id=0 sport=80 flags=SA seq=2 win=5120 rtt=3.6 ms--- 192.168.0.30 hping statistic ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 3.6/6.4/7.8 ms

奇怪,hping3 的结果显示,Nginx 的 80 端口确确实实还是正常状态。这该如何是好呢?别忘了,我们还有个大杀器——抓包操作。看来有必要抓包看看了。

3.4 tcpdump

接下来,我们切换回终端一,在容器终端中,执行下面的 tcpdump 命令,抓取 80 端口的包:

root@nginx:/# tcpdump -i eth0 -nn port 80
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes   

然后,切换到终端二中,再次执行前面的 curl 命令:

$ curl --max-time 3 http://192.168.0.30/
curl: (28) Operation timed out after 3000 milliseconds with 0 bytes received

等到 curl 命令结束后,再次切换回终端一,查看 tcpdump 的输出:

14:40:00.589235 IP 10.255.255.5.39058 > 172.17.0.2.80: Flags [S], seq 332257715, win 29200, options [mss 1418,sackOK,TS val 486800541 ecr 0,nop,wscale 7], length 0
14:40:00.589277 IP 172.17.0.2.80 > 10.255.255.5.39058: Flags [S.], seq 1630206251, ack 332257716, win 4880, options [mss 256,sackOK,TS val 2509376001 ecr 486800541,nop,wscale 7], length 0
14:40:00.589894 IP 10.255.255.5.39058 > 172.17.0.2.80: Flags [.], ack 1, win 229, options [nop,nop,TS val 486800541 ecr 2509376001], length 0
14:40:03.589352 IP 10.255.255.5.39058 > 172.17.0.2.80: Flags [F.], seq 76, ack 1, win 229, options [nop,nop,TS val 486803541 ecr 2509376001], length 0
14:40:03.589417 IP 172.17.0.2.80 > 10.255.255.5.39058: Flags [.], ack 1, win 40, options [nop,nop,TS val 2509379001 ecr 486800541,nop,nop,sack 1 {76:77}], length 0

经过这么一系列的操作,从 tcpdump 的输出中,我们就可以看到:

  • 前三个包是正常的 TCP 三次握手,这没问题;
  • 但第四个包却是在 3 秒以后了,并且还是客户端(VM2)发送过来的 FIN 包,也就说明,客户端的连接关闭了。

我想,根据 curl 设置的 3 秒超时选项,你应该能猜到,这是因为 curl 命令超时后退出了。我把这一过程,用 TCP 交互的流程图(实际上来自 Wireshark 的 Flow Graph)来表示,你可以更清楚地看到上面这个问题:

在这里插入图片描述
这里比较奇怪的是,我们并没有抓取到 curl 发来的 HTTP GET 请求。那么,究竟是网卡丢包了,还是客户端压根儿就没发过来呢?我们可以重新执行 netstat -i 命令,确认一下网卡有没有丢包问题:

root@nginx:/# netstat -i
Kernel Interface table
Iface      MTU    RX-OK RX-ERR RX-DRP RX-OVR    TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0       100      157      0    344 0            94      0      0      0 BMRU
lo       65536        0      0      0 0             0      0      0      0 LRU

还是那句话,遇到搞不懂的现象,不妨先去查查工具和方法的原理。我们可以对比一下这两个工具:

  • hping3 实际上只发送了 SYN 包;
  • 而 curl 在发送 SYN 包后,还会发送 HTTP GET 请求。

HTTP GET ,本质上也是一个 TCP 包,但跟 SYN 包相比,它还携带了 HTTP GET 的数据。那么,通过这个对比,你应该想到了,这可能是 MTU 配置错误导致的。为什么呢?

其实,仔细观察上面 netstat 的输出界面,第二列正是每个网卡的 MTU 值。eth0 的 MTU 只有 100,而以太网的 MTU 默认值是 1500,这个 100 就显得太小了。

当然,MTU 问题是很好解决的,把它改成 1500 就可以了。我们继续在容器终端中,执行下面的命令,把容器 eth0 的 MTU 改成 1500:

root@nginx:/# ifconfig eth0 mtu 1500

修改完成后,再切换到终端二中,再次执行 curl 命令,确认问题是否真的解决了:

$ curl --max-time 3 http://192.168.0.30/
<!DOCTYPE html>
<html>
...
<p><em>Thank you for using nginx.</em></p>
</body>
</html>

非常不容易呀,这次终于看到了熟悉的 Nginx 响应,说明丢包的问题终于彻底解决了。

来自:

  • 服务器总是时不时丢包,我该怎么办?(下)

这篇关于容器应用总是丢包如何分析?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/415326

相关文章

LeetCode11. 盛最多水的容器题解

LeetCode11. 盛最多水的容器题解 题目链接: https://leetcode.cn/problems/container-with-most-water 示例 思路 暴力解法 定住一个柱子不动,然后用其他柱子与其围住面积,取最大值。 代码如下: public int maxArea1(int[] height) {int n = height.length;int

[职场] 公务员的利弊分析 #知识分享#经验分享#其他

公务员的利弊分析     公务员作为一种稳定的职业选择,一直备受人们的关注。然而,就像任何其他职业一样,公务员职位也有其利与弊。本文将对公务员的利弊进行分析,帮助读者更好地了解这一职业的特点。 利: 1. 稳定的职业:公务员职位通常具有较高的稳定性,一旦进入公务员队伍,往往可以享受到稳定的工作环境和薪资待遇。这对于那些追求稳定的人来说,是一个很大的优势。 2. 薪资福利优厚:公务员的薪资和

亮相WOT全球技术创新大会,揭秘火山引擎边缘容器技术在泛CDN场景的应用与实践

2024年6月21日-22日,51CTO“WOT全球技术创新大会2024”在北京举办。火山引擎边缘计算架构师李志明受邀参与,以“边缘容器技术在泛CDN场景的应用和实践”为主题,与多位行业资深专家,共同探讨泛CDN行业技术架构以及云原生与边缘计算的发展和展望。 火山引擎边缘计算架构师李志明表示:为更好地解决传统泛CDN类业务运行中的问题,火山引擎边缘容器团队参考行业做法,结合实践经验,打造火山

自制的浏览器主页,可以是最简单的桌面应用,可以把它当成备忘录桌面应用

自制的浏览器主页,可以是最简单的桌面应用,可以把它当成备忘录桌面应用。如果你看不懂,请留言。 完整代码: <!DOCTYPE html><html lang="zh-CN"><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width, initial-scale=1.0"><ti

Python应用开发——30天学习Streamlit Python包进行APP的构建(9)

st.area_chart 显示区域图。 这是围绕 st.altair_chart 的语法糖。主要区别在于该命令使用数据自身的列和指数来计算图表的 Altair 规格。因此,在许多 "只需绘制此图 "的情况下,该命令更易于使用,但可定制性较差。 如果 st.area_chart 无法正确猜测数据规格,请尝试使用 st.altair_chart 指定所需的图表。 Function signa

高度内卷下,企业如何通过VOC(客户之声)做好竞争分析?

VOC,即客户之声,是一种通过收集和分析客户反馈、需求和期望,来洞察市场趋势和竞争对手动态的方法。在高度内卷的市场环境下,VOC不仅能够帮助企业了解客户的真实需求,还能为企业提供宝贵的竞争情报,助力企业在竞争中占据有利地位。 那么,企业该如何通过VOC(客户之声)做好竞争分析呢?深圳天行健企业管理咨询公司解析如下: 首先,要建立完善的VOC收集机制。这包括通过线上渠道(如社交媒体、官网留言

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述

气象站的种类和应用范围可以根据不同的分类标准进行详细的划分和描述。以下是从不同角度对气象站的种类和应用范围的介绍: 一、气象站的种类 根据用途和安装环境分类: 农业气象站:专为农业生产服务,监测土壤温度、湿度等参数,为农业生产提供科学依据。交通气象站:用于公路、铁路、机场等交通场所的气象监测,提供实时气象数据以支持交通运营和调度。林业气象站:监测林区风速、湿度、温度等气象要素,为林区保护和

PyTorch模型_trace实战:深入理解与应用

pytorch使用trace模型 1、使用trace生成torchscript模型2、使用trace的模型预测 1、使用trace生成torchscript模型 def save_trace(model, input, save_path):traced_script_model = torch.jit.trace(model, input)<

哺乳细胞重组表达人鼠嵌合抗体:制备与应用

重组抗体是一类具有广泛应用价值的蛋白质,在药物研发和生物医学研究中发挥着重要作用。本文将介绍重组抗体的表达方式,重点关注嵌合抗体制备和哺乳细胞重组表达人鼠嵌合抗体的技术原理和应用。 重组抗体表达的原理和方法 重组抗体表达是通过将人或动物源的免疫球蛋白基因导入表达宿主细胞,并使其表达出特异性抗体蛋白质。常用的表达系统包括细菌、哺乳细胞和真核微生物等。 嵌合抗体制备的步骤和优势 选择适当的抗原

打包体积分析和优化

webpack分析工具:webpack-bundle-analyzer 1. 通过<script src="./vue.js"></script>方式引入vue、vuex、vue-router等包(CDN) // webpack.config.jsif(process.env.NODE_ENV==='production') {module.exports = {devtool: 'none